

4 January 2019

Document Control

Document:	Geotechnical Investigation
File Location:	I:\Projects\30041768 - Wyalong SF GI\04 Technical\Geotechnical\Final Report
Project Name:	West Wyalong Solar Farm
Project Number:	30041768
Revision Number:	Rev 1

Revision History

REVISION NO.	DATE	DATE PREPARED BY REVIEWED BY		APPROVED FOR ISSUE BY			
0	31 August 2018	Nihad Rajabdeen	Thushara Malawige	Preeti Arora			
1	4 January 2019	Nihad Rajabdeen	Thushara Malawige	Preeti Arora			

Issue Register

DISTRIBUTION LIST	DATE ISSUED	NUMBER OF COPIES
Lightsource BP	4 January 2019	Only Electronic Copy Issued

Important Notice

This report is confidential and is provided solely for the purposes of preliminary geotechnical assessment of the site for the development of West Wyalong Solar Farm. This report is provided pursuant to a Consultancy Agreement between SMEC Australia Pty Ltd ("SMEC") and Lightsource BP, under which SMEC undertook to perform a specific and limited task for Lightsource BP. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than Lightsource BP. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

Executive Summary

This executive summary presents the findings of the geotechnical investigation (GI) undertaken by SMEC Australia Pty Ltd (SMEC) for the West Wyalong Solar Farm (WWSF) project, on behalf of Lightsource BP. The proposed site for WWSF is located approximately 20 km North West of West Wyalong, New South Wales.

It is understood that the proposed solar facility development is a 112 Megawatt utility-scale renewable energy project, covering an area of about 285 hectares.

The geotechnical investigation was conducted from the 24th July to 27th July 2018, where the fieldwork involved the drilling of thirty (30) boreholes to a nominal depth of 6 m or prior refusal. Electrical resistivity testing was undertaken at five locations with five traverses across the site to assess the in-situ electrical resistivity (ER) at the site.

A geotechnical ground model was developed from the investigations undertaken by SMEC and is summarised here:

Unit No.	Material Description	Depth of Unit (m bgl)
1	Topsoil Sandy Clay with grass root mat cover	0.0 to ^T 0.2
2a	Alluvial Soil CLAY / Sandy CLAY; dark to pale grey-brown; occasional bands of sandy silt; typically, stiff.	^T 0.2 to 2.5
2b	Alluvial Soil CLAY / Sandy CLAY; dark to pale grey-brown; occasional bands of sandy silt; typically, very stiff or better.	2.5 to *5.95
3a	Residual Soil Clayey SILT / Sandy SILT; pale grey mottled brown; typically, very stiff to hard; only encountered in BH05 and BH08.	2.5 to ^R 4.8
3b	Residual Soil Silty CLAY / CLAY; red-brown mottled grey and orange; typically, hard; only encountered in BH06 and BH24.	2.5 to ^R 5.75

^{*} Maximum depth of investigation; Refusal on inferred granite rock / boulder (HW-MW), Toisturbed natural topsoil

From the geotechnical investigation it was apparent that the site primarily consisted of topsoil over stiff to very stiff alluvial clays, with residual soils encountered prior to refusal on inferred granitic rock or boulders (HW-MW) at five borehole locations (BH05, BH06, BH08, BH24 and BH28), between 3.25 m and 5.75 m bgl.

Soil resistivity ground models were developed from the electrical resistivity testing undertaken at the substation and the rest of the site. From the electrical resistivity testing at the substation, a soil model of two layers was prepared:

Laure	Depth	Resistivity		
Layer	(m)	(Ω-m)		
1	0 – 0.431	28.91		
2	0.431 to infinite	6.86		

From the electrical resistivity testing at the rest of the site, the following soil model of two layers was prepared:

Leven	Depth	Resistivity
Layer	(m)	(Ω-m)
1	0 – 0.276	68.35
2	0.276 to infinite	5.34

The durability criteria of AS2159-2009, indicate that for concrete piles, the ground conditions have an exposure classification of Mild. Results also indicate that for durability of steel piles, the ground conditions have an exposure classification of Moderate.

The soil materials encountered in the investigation can generally be excavated with conventional earth moving equipment such as excavators, backhoes, dozers, etc. Solid flight auger refusal was encountered towards the north-western and western portions of the site, with refusal not encountered towards the middle and east of the site.

Advice from experienced piling contractor must be sought if piling requires pre-drilling into rock. Given that current scope of works did not involve coring into rock, further investigation may be required to identify weathering grade, strength and discontinuity of rock. Additional geotechnical investigation may be required after preliminary design stage of the development to delineate lateral extent of shallow rock encountered if effected for pile foundation.

The excavatability of the rock mass (i.e. Granite) in unconfined situations is a function of several variables including rock strength, fracture spacing and size and orientation of the excavation. Depending on excavation depths, heavy ripping conditions should be expected which would require the use of larger plant (i.e. D9 or larger) together with rock breaking equipment to facilitate excavation and removal. It is recommended that a trial excavation be carried out to assess the general rippability of the rock and establish rates of production.

Temporary unsupported excavations in the site clay soils can be excavated at batters of 1 H: 1 V to a maximum depth of 2 m, provided that surcharge loads are kept well clear of the crest of batters. For long-term deeper excavations into soils where 2 H: 1 V batters are not feasible, the excavation should be reinforced or retained.

The geotechnical interpretive report must be read as a whole and the executive summary is not a substitute for this.

Table of Contents

1	INTRODUCTION	3
2	SCOPE OF WORKS	4
3	SITE DESCRIPTION	5
4	INVESTIGATION METHODOLOGY 4.1 Fieldwork – Borehole Drilling 4.2 Geotechnical Laboratory Testing 4.3 Fieldwork – Electrical Resistivity Testing	7 9
5	FIELDWORK RESULTS 5.1 Site Walkover	
6	COMMENTS 6.1 Geotechnical Units 6.2 Site Classification 6.3 Earthquake Loading 6.4 Geotechnical Design Parameters of Soil for Shallow Footings 6.5 Foundation considerations 6.6 Site Trafficability 6.7 Earthworks and Subgrade preparation 6.8 Material Suitability for Reuse 6.9 Excavation of Material and Ground Support 6.10 Groundwater Control 6.11 Erosion and Drainage 6.12 Subgrade Evaluation and Preliminary Pavement Assessment 6.13 Thermal Resistivity	
	6.14 Earth Resistivity Testing (Wenner Method) 6.15 Durability Assessment 6.16 Anticipated Construction Difficulties 6.17 Construction Inspections	
7	CONCLUSION	28
8	LIMITATION	29

Appendices

APPENDIX A BOREHOLE LOCATION PLAN

APPENDIX B SITE PHOTOGRAPHS

APPENDIX C BOREHOLE LOGS AND EXPLANATORY NOTES

APPENDIX D LABORATORY RESULTS

APPENDIX E ELECTRICAL RESISTIVITY TESTING RESULTS

List of Tables

Table 4-1: Summary of borehole locations (UTM 55H coordinate system)	8
Table 4-2: ERT Traverse Summary	. 10
Table 5-1: Summary of ground conditions (BH01 to BH15)	. 12
Table 5-2: Summary of ground conditions (BH16 to BH30)	. 12
Table 5-3: Summary of laboratory test results	. 13
Table 5-4: Laboratory Test Results (Aggressivity Results Summary)	. 14
Table 5-5: Thermal Resistivity Test Results	. 14
Table 6-1: Interpreted Ground Model	. 15
Table 6-2: Geotechnical Preliminary Design Parameters	. 17
Table 6-4: Pile Design Parameters	. 19
Table 6-5: Individual Assigned Risk Factors - Site Conditions	. 20
Table 6-6: Fill Compaction Requirements	. 23
Table 6-7: Recommended Batter Angles	. 24
Table 6-8: Substation Measurements - Soil Model Thermal Resistivity	. 26
Table 6-9: Field Measurements - Soil Model Thermal Resistivity	. 26
List of Figures	
Figure 1: Approximate site location	5
Figure 2: Extract of geological map of New South Wales, Wyalong sheet, 1:100,000 scale (Not To Scale)	6
Figure 3: Thermal Resistivity Findings	. 25

References

Jayasekara, S. and Mohajerani, A. (2003). SOME RELATIONSHIPS BETWEEN SHRINK-SWELL INDEX, LIQUID LIMIT, PLASTICITY INDEX, ACTIVITY AND FREE SWELL INDEX. *Australian Geomechanics Journal*, 53-58.

1 Introduction

This report presents the results of a geotechnical investigation performed by SMEC Australia Pty Ltd (SMEC) for the proposed West Wyalong Solar Farm (WWSF) development in West Wyalong, NSW. It is understood that the proposed solar facility development is a 112 Megawatt utility-scale renewable energy project, covering an area of about 285 hectares.

This geotechnical investigation and interpretive report provides comments to aid in the conceptual design of the solar plant, including assessing foundation types, earthworks, haul roads, resistivity and soil parameters to support the solar plant design and installation. The design development drawings were not available at the time of preparing this report. Indicative loads were also not available at the time of preparing this report.

The work has been commissioned by Lightsource BP (LBP) to undertake the geotechnical investigation under the SMEC Short-Form Consultancy agreement. The purpose of the investigation presented herein is to assess subsurface conditions relevant to design and construction of the solar farm. The work has been performed in general accordance with SMEC proposal 1031562 Rev0, dated 11 July 2018.

2 Scope of works

The scope of works for the geotechnical investigation are summarised below:

- Conduct a site walkover to obtain an understanding of the project site;
- Coordination of field investigation, including preparation of a site health and safety plan;
- Review of existing geological and geotechnical information;
- Underground services check for existing services across the site;
- Provide site supervision of field investigation works;
- Drill boreholes and carry out standard penetration tests (SPT);
- Electrical resistivity testing at nominated locations;
- Collection of representative soil samples for subsequent laboratory testing;
- Geotechnical laboratory testing, including thermal resistivity tests; and
- Prepare a report presenting the factual findings of the investigation, together with interpretation and advice pertaining to the project, including:
 - Location maps and site plans showing the logged locations of site investigation points;
 - Observation findings and site photographs from site walkover assessment;
 - Detailed description of surface and subsurface conditions likely to be experienced during construction of roads, foundations, and civil infrastructures;
 - Description of the presence/depth of groundwater and recommendations for groundwater management (if encountered);
 - Recommendations on earthquake site factor in accordance with AS1170.4 Structure Design Actions - Earthquake action of Australia;
 - Foundation design parameters in accordance with Australian Standard AS2159-2009 Piling –
 Design and Installation;
 - Laboratory test results;
 - Aggressivity characteristics of the in-situ soil on steel and concrete durability;
 - Electrical and thermal characteristics of the soils that relate to the design of electrical earthing and power reticulation network;
 - Recommendations for site preparation, road works, and earthwork including stripping, grubbing, compaction criteria, imported fill criteria, and suitability of the onsite soils for use as fill (if at all required); and
 - Recommendations for shallow foundations and equipment pads including bearing capacity, lateral resistance, and estimated total and differential settlement.

3 Site Description

3.1 General

The proposed site for WWSF is located approximately 20 km North West of West Wyalong, New South Wales. The site is bounded by Blands Lane to the North, Bodells Lane to the East, vacant lands to the South and Clear Ride Road to the West. The proposed site covers an area of approximately 285 hectares. The approximate extents of the site and location is shown in Figure 1.

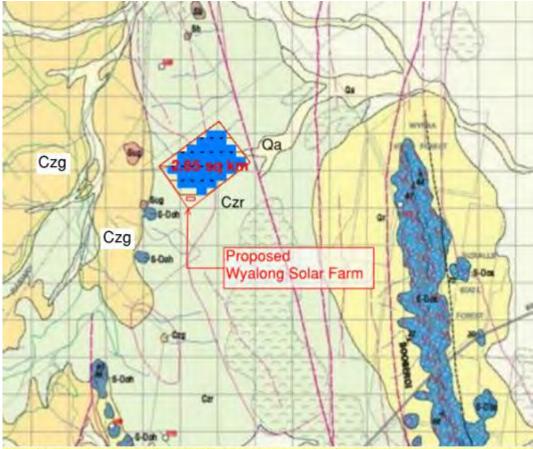


Figure 1: Approximate site location

3.2 Anticipated Geological Setting

Reference to the Geological Survey of New South Wales 1:100,000 scale 'Wyalong' map indicates that the site is underlain by Tertiary age, Cainozoic Formation (Czr) that is described as shallow slope colluvial plains, some residual veneer, with inactive alluvial plains. This type of strata typically comprises of silt, sand and clay with gravels.

The Wyalong geological map also indicates that the areas to the east of the site comprise of Quaternary age Cainozoic Formation (Qa) that typically comprise - alluvium and west of the site comprise of Tertiary age Cainozoic Formation (Czg) that typically comprise highly weathered granite and colluvial sediments. An extract of the Geological Map of New South Wales, Wyalong (1:100,000 scale) is shown in Figure 2.

Czr: Tertiary age, Cainozoic Formation - typically comprises of silt, sand and clay with gravels.

Czg: Tertiary age, Cainozoic Formation - typically comprise highly weathered granite and colluvial sediments.

Qa: Quaternary age, Cainozoic Formation (Qa) that typically comprise - alluvium

Figure 2: Extract of geological map of New South Wales, Wyalong sheet, 1:100,000 scale (Not To Scale)

4 Investigation Methodology

4.1 Fieldwork – Borehole Drilling

The geotechnical investigation was conducted from the 24th July to 27th July 2018. Based on the review of Dial Before You Digs (DBYD) plans and discussions with the land owner, it was confirmed that no underground services were present on-site which were at risk for the investigation works. The fieldwork involved the drilling of thirty (30) boreholes to depths of 6 m or prior refusal. All boreholes were completed in wheat fields.

The borehole co-ordinates and surface RL's are summarised in Table 4-1. No surveying of the subject locations was conducted; the coordinates of the boreholes were recorded using a hand-held GPS device and elevations were checked against google earth. It should be noted that the reported reduced levels are approximate only. A site locality plan and a borehole location plan is presented in Appendix A. Site photographs are presented in Appendix B.

The boreholes were drilled using a 4WD mounted drill rig, supplied and operated by Apex Drilling Pty Ltd. The boreholes were advanced using solid flight auguring techniques. Standard Penetration Tests (SPTs) were collected at nominal depth intervals in soil strata. The SPTs were conducted to assess soil consistencies and to collect disturbed samples at select depths. Bulk samples were collected via shallow pits excavated by hand.

Fieldwork was supervised by a SMEC Geotechnical Engineer who was responsible for positioning the boreholes at the nominated locations, preparing borehole logs in general accordance with AS1726-2017 'Geotechnical Site Investigations' and coordinating soil sampling. On completion of drilling, all boreholes were backfilled with drill cuttings and reinstated to match the existing ground surface.

The selected samples were sent for laboratory testing to assist in determining the engineering properties of site soils. The laboratory tests were undertaken in a NATA accredited laboratory.

Borehole engineering logs together with explanatory notes describing terms and symbols used in their preparation are provided in Appendix C.

Table 4-1: Summary of borehole locations (UTM 55H coordinate system)

Borehole ID	Easting (m)	Northing (m)	Final Depth (m)	Approximate Elevation m AHD
BH01	529681	6257971	5.95	235
BH02	530382	6259587	5.95	231
вноз	530110	6259399	5.95	234
BH04	529857	6259210	5.95	231
BH05	529576	6259028	4.80	233
вно6	529338	6258835	3.70	231
BH07	529594	6258646	5.93	232
BH08	529587	6258456	3.25	235
ВН09	529855	6258460	5.95	234
BH10	530106	6258265	5.95	232
BH11	530379	6258948	5.95	233
BH12	530634	6258645	5.95	231
BH13	530622	6258828	5.95	230
BH14	530630	6259004	5.95	231
BH15	530884	6259067	5.95	231
BH16	530626	6259201	5.95	232
BH17	530382	6259394	5.95	233
BH18	530109	6259203	5.95	229
BH19	529856	6259010	5.95	233
BH20	529857	6258832	5.95	233
BH21	529854	6258646	5.95	232
BH22	530108	6258641	5.95	231
BH23	530365	6258645	5.95	233
BH24	529614	6259383	5.75	232

Continued from previo	Continued from previous page.											
Borehole ID	Easting (m)	Northing (m)	Final Depth (m)	Approximate Elevation * m AHD								
BH25	530380	6259021	5.95	232								
BH26	530111	6258981	5.95	233								
BH27	530108	6258829	5.95	231								
BH28	526921	6258271	3.60	235								
BH29	530883	6258830	5.95	231								
BH30	529338	6258643	5.95	234								

4.2 Geotechnical Laboratory Testing

Laboratory testing on selected soil samples was undertaken in a NATA registered Laboratory. The laboratory testing was undertaken in accordance with the relevant sections of AS1289 "Methods of Testing Soils for Engineering Purposes". The laboratory testing completed include:

- 5 x Atterberg limits and linear shrinkage tests;
- 5 x Field moisture content tests:
- 5 x Particle size distribution tests (AS1289 3.6.1);
- 1 x Hydrometer test (AS1289 3.6.3)
- 8 x Emerson Dispersion tests (AS1289 3.8.1);
- 8 x pH, Chloride, Sulphate and Sulphide
- 3 x Thermal Resistivity tests
- 8 x Standard Compaction tests
- 8 x Californian Bearing Ratio (CBR) tests

The laboratory test result certificates are presented in Appendix D. There were 9 samples submitted for CBR and standard compaction testing, but one of the samples did not have sufficient material for CBR testing and standard compaction.

4.3 Fieldwork – Electrical Resistivity Testing

All electrical resistivity testing (ERT) locations were intended to spread out across the site. The ERT was conducted from 21st Aug to 22nd Aug 2018. All traverses were completed in dry wheat fields with damp soil below surface.

ERTs were undertaken at five locations with five traverses across the site to assess the in-situ electrical resistivity (ER) at the site. Testing was undertaken by a SMEC Electrical Engineers using the Wenner four Electrode Method in accordance with ASTM G57-06. Following steps were adopted for the Wenner method.

- Select a test site and mark a centre point as reference point of the test location;
- Insert four earth electrode rods into ground. The electrode rods to be inserted at equal spacing (a spacing = electrode spacing);

- Ensure that the test electrode rods are in a straight line and the inserted depth (b) is no more than 1/20th of the electrode spacing. (b = a / 20)
- Using appropriate testing equipment, current was injected into the earth via the two outer rods and the voltage between the two inner rods was measured.

Testing was conducted with two perpendicular axes (Traverse 1 and Traverse 2) at the substation area of the site to test for anisotropy in the results, such as might indicate lateral variations in site conditions contrary to the assumptions of the sounding method (i.e. horizontal, homogeneous and isotropic layering). Single traverses were conducted in the southwestern, northern and eastern portions of the site, outside the substation area. The orientation of the ERT axes are shown on the Test Site Location Plan, in Appendix A.

A summary of the ERT traverses is presented in Table 4-2.

Table 4-2: ERT Traverse Summary

ERT Traverse ID	ERT Traverse Direction	Easting	Northing
		(m)	(m)
Traverse 1	N/W Corner End Point 1	529604	6258059
	N/W Corner End Point 2	529749	6257876
Traverse 2	N/E Corner End Point 1	529561	6257968
	N/E Corner End Point 2	529797	6257963
Traverse 3	N-S Direction	529651	6259018
Traverse 4	E-W Direction	529586	6258460
Traverse 5	N-S Direction	530467	6259335

5 Fieldwork Results

5.1 Site Walkover

From the site walkover, the site was observed to be generally flat with dry wheat crops (vegetation) on the surface. Some undulations were observed towards the southern and south-eastern sides of the site (noted around boreholes BH29, BH15, BH21). There were large trees intermittently spread on site; most trees near boreholes BH26 and BH21. There was an abandoned structure near borehole BH26 and a small dam near borehole BH21. Site photographs are presented in Appendix B.

5.2 Subsurface Conditions

This section provides a general description of the subsurface conditions encountered across the site. For conditions encountered at specific borehole locations, reference should be made to the engineering borehole logs provided in Appendix C. The sub-surface conditions encountered in the boreholes were generally consistent with those anticipated from published geological sources. Summary tables of the encountered subsurface conditions are presented here in Tables 5-1 and 5-2.

5.3 Groundwater

Standpipe installation was not undertaken during the investigation as it was not in the scope of works. Groundwater was not observed during drilling within borehole drill depths. However, it should be noted that the boreholes were also not opened long enough to establish any groundwater inflows. Increased moisture content in soils was noted in borehole BH16 at 1 m below ground level.

5.4 Laboratory Test Results

Geotechnical laboratory test results of soils are summarised in Table 5-3. Aggressivity testing (pH, Sulphate, Chloride, and electrical conductivity) and Thermal Resistivity of soil are summarised in Table 5-4 and Table 5-5, respectively.

5.5 Electrical Resistivity Test Results

In accordance with accepted practice, the resistivity soundings were interpreted using standard industry inversion software (CDEGS) assuming a horizontally layered earth model. The software results are based on an algorithm converted into a two (2) layer soil model.

Resistivity calculations were made in accordance with the formula:

Pa =
$$2 \pi$$
 a R

- Pa = Apparent Earth Resistance (Ω m)
- a = Spacing in metres between each electrode (m)
- R = Instrument resistance reading (Ω)

Results of electrical resistivity tests are presented in Appendix E.

Table 5-1: Summary of ground conditions (BH01 to BH15)

	Depth Below Ground Level to the Base of the Layer (m BGL)														
Ground Condition	BH01	BH02	BH03	BH04	BH05	вн06	BH07	BH08	ВН09	BH10	BH11	BH12	BH13	BH14	BH15
Top Soil / Grass root mat cover	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2 ^T	0.2 ^T	0.2 ^T	0.2 ^T	0.1	0.2 ^T
CLAY / Sandy CLAY / Silty CLAY; dark to pale grey-brown; occasional bands of sandy silt; typically, stiff to very stiff. Alluvial Deposits	5.95*	5.95*	5.95*	5.95*	2.5	2.5	5.93*	2.85	5.95*	5.95*	5.95*	5.95*	5.95*	5.95*	5.95*
Clayey SILT / Silty CLAY / Sandy SILT / CLAY; grey mottled brown; typically, hard. Residual Granitic Deposits	-	-	-	-	4.8 ^R	3.6 ^R	-	3.25 ^R	-	-	-	-	-	-	-

Notes: *Target Depth of Borehole, Refusal on inferred granite rock / boulder (HW-MW), Disturbed natural topsoil

Table 5-2: Summary of ground conditions (BH16 to BH30)

	Depth Below Ground Level to the Base of the Layer (m BGL)														
Ground Condition	BH16	BH17	BH18	BH19	BH20	BH21	BH22	BH23	BH24	BH25	BH26	BH27	BH28	BH29	BH30
Top Soil / Grass root mat cover	0.1	0.2 [™]	0.2 ^T	0.2 ^T	0.1	0.2 ^T	0.2 ^T	0.1	0.1	0.2 ^T	0.2 ^T	0.1	0.2 ^T	0.2 ^T	0.2 ^T
CLAY / Sandy CLAY / Silty CLAY; dark to pale grey-brown; occasional bands of sandy silt; typically, stiff to very stiff. Alluvial Deposits	5.95*	5.95*	5.95*	5.95*	5.95*	5.95*	5.95*	5.95*	5.5	5.95*	5.95* ^{, A}	5.95*	3.6 ^R	5.95*	5.95*
Clayey SILT / Silty CLAY / Sandy SILT / CLAY; grey mottled brown; typically, hard. Residual Granitic Deposits	-	-	-	-	-	-	-	-	5.75 ^R	-	-	-	-	-	-

Notes: *Target Depth of Borehole, Refusal on inferred granite rock / boulder (HW-MW), Disturbed natural topsoil, A Sandy SILT from 0.2 m to 1.0 m

Table 5-3: Summary of laboratory test results

Borehole ID	Depth	Field Moisture Content	Standard Optimum Moisture Content	Field Moisture Variation	Standard Maximum Dry Density	CBR	CBR Swell	Liquid Limit	Plastic Limit	Plasticity Index	Linear Shrinkage	Emerson Class No	Particle Size Passing 0.075mm
	(m)	(%)	(%)	(%)	t/m³	(%)	(%)	(%)	(%)	(%)	(%)		(%)
BH01	0.50 - 1.00	11.9	15.5	3.6 Dry	1.81	3.5	3.0	-	-	-	-	2	-
BH03	0.50 - 0.60	23.9	23.5	0.4 Wet	1.57	3.5	1.0	65	22	43	18.0	2	-
BH03	0.50 - 1.0	17.0	-	-	-	-	-	-	-	-	-	2	-
BH04	2.50	21.5	-	-	-	-	-	-	-	-	-	-	-
BH05	0.50 - 1.0	17.0	20.5	3.5 Dry	1.64	1.0	3.5	67	18	49	20.0	-	-
BH08	0.50-1.00	22.1	24.0	1.9 Dry	1.56	1.5	2.0	-	-	-	-	2	-
BH10	0.40-0.60	16.4	-	-	-	-	-	-	-	-	-	3	-
BH10	0.50	-	-	-	-	-	-	78	19	59	22.0	-	-
BH12	0.50	-	-	-	-	-	-	78	21	57	20.0	-	-
BH12	0.50-0.60	24.5	23.0	1.5 Wet	1.57	1.5	2.5	-	-	-	-	2	-
BH12	4.00	24.3	-	-	-	-	-	-	-	-	-	-	-
BH16	0.50	-	-	-	-	-	-	58	19	39	20.0	-	-
BH16	0.50-1.00	22.5	21.0	1.5 Wet	1.62	3.0	2.0	-	-	-	-	2	-
BH16	1.00	21.9	-	-	-	-	-	-	-	-	-	-	-
BH17	0.50	15.7	-	-	-	-	-	-	-	-	-	-	70
BH18	1.00	13.7	-	-	-	-	-	-	-	-	-	-	73
BH18	4.00	18.9	-	-	-	-	-	-	-	-	-	-	-
BH21	0.50-1.00	12.0	16.0	4.0 Dry	1.76	2.5	3.0	-	-	-	-	-	-
BH26	0.50-0.60	7.6	10.5	2.9 Dry	1.97	5.0	1.0	-	-	-	-	5	-
BH26	0.5	10.0	-	-	-	-	-	-	-	-	-	-	58
BH26	1.0	10.7	-	-	-	-	-	-	-	-	-	-	55
BH26	4.0	23.5	-	-	-	-	-	-	-	-	-	-	-
BH28	0.5	10.5	-	-	-	-	-	-	-	-	-	-	48

GEOTECHNICAL INVESTIGATION
West Wyalong Solar Farm
Prepared for Lightsource BP

SMEC Internal Ref. 30041768 4 January 2019

Table 5-4: Laboratory Test Results (Aggressivity Results Summary)

Borehole ID	Depth	Field Moisture Content	рН	Chloride	Sulphate (So⁴)	Electrical Conductivity (EC)	Resistivity
	m	%		mg/kg	mg/kg	μS/cm	Ohm.cm
BH04	1.50	21	5.0	700	210	380	2,631.6
BH06	0.50	12	7.9	380	120	380	2,631.6
BH07	0.10	3.5	7.4	6.9	<30	48	20,833.0
BH16	1.00	17	7.4	590	180	370	2,702.7
BH17	0.10	4.5	6.4	42	<30	190	5,263.2
BH23	2.00	16	4.8	630	120	430	2,325.6
BH27	0.10	3.7	6.3	38	<30	110	9,090.9
BH28	0.50-0.70	15	8.4	330	72	290	3,448.3

Table 5-5: Thermal Resistivity Test Results

Test	Depth		Soil Thermal Properties										
Location	(m)	MC (%)	W/mK	m K / W	MC (%)	W/mK	m K / W	MC (%)	W/mK	m K / W	MC (%)	W/mK	m K / W
BH01	1.00-1.50	0.0	0.32	3.13	4.6	0.58	1.72	9.0	1.05	0.95	14.7	1.74	0.57
BH05	1.00-1.50	0.3	0.26	3.85	7.4	0.44	2.27	14.0	0.92	1.09	22.8	1.26	0.79
BH16	1.00-1.50	0.0	0.36	2.78	6.6	0.50	2.0	11.9	0.90	1.11	19.3	1.46	0.68

MC (%): Moisture content; W / m K: Thermal Conductivity; m K / W: Thermal Resistivity

6 Comments

6.1 Geotechnical Units

A geotechnical ground model was developed from the investigations undertaken by SMEC and is summarised in Table 6-1.

Table 6-1: Interpreted Ground Model

Unit No.	Material Description	Depth of Unit (m bgl)
1	Topsoil Sandy Clay with grass root mat cover	0.0 to ^T 0.2
2 a	Alluvial Soil CLAY / Sandy CLAY; dark to pale grey-brown; occasional bands of sandy silt; consistency was typically stiff.	^T 0.2 to 2.5
2b	Alluvial Soil CLAY / Sandy CLAY; dark to pale grey-brown; occasional bands of sandy silt; consistency was typically very stiff or better.	2.5 to *5.95
3 a	Residual Soil Clayey SILT / Sandy SILT; pale grey mottled brown; consistency was typically very stiff to hard; only encountered in BH05 and BH08.	2.5 to ^R 4.8
3b	Residual Soil Silty CLAY / CLAY; red-brown mottled grey and orange; consistency was typically very stiff to hard; only encountered in BH06 and BH24.	2.5 to ^R 5.75

^{*} Maximum depth of investigation; R Refusal on inferred granite rock / boulder (HW-MW), $^\intercal$ Disturbed natural topsoil

From the geotechnical investigation it was apparent that the site primarily consisted of topsoil over stiff to very stiff alluvial clays, over residual soils. Five out of thirty boreholes drilled across the site encountered solid flight auger refusal on inferred granitic rock or boulders (HW-MW) between 3.25 m and 5.75 m bgl.

The delineation of topsoil was done based on visual and tactile assessment made onsite; a significant portion of the site had disturbed topsoil extending to 0.2 m below ground level. This disturbed soil was classified as disturbed natural topsoil and not as fill, as there was no evidence of imported fill material onsite. The disturbed natural topsoil was evident in BH10 to BH13, BH15, BH17 to BH19, BH21, BH22, BH25, BH26, and BH28 to BH30. This was further confirmed with the land owner, that there was no imported fill onsite.

Refusal was reached in five of the thirty boreholes (BH05, BH06, BH08, BH24 and BH28), where refusal was inferred as reached on top of granitic rock or boulders (HW-MW). Four of the five boreholes where refusal was reached, had residual soils present. This was derived from visual and tactile assessment onsite. Solid flight auger refusal was encountered towards the north-western and western portions of the site, with refusal not encountered towards the middle and east of the site.

6.2 Site Classification

Although not strictly applicable to the proposed development, classification of the ground conditions in accordance with AS2870-2011 provides a means of estimating the level of soil reactivity and associated movement patterns and magnitude that should be considered in design.

The natural clays encountered in the investigation are considered to have a high potential for volume change with respect to variation in moisture content and are considered to be highly reactive. The site characteristic surface movement will depend on the thickness of natural clays below footings/slabs.

The laboratory Atterberg limit results were used to calculate the shrink-swell index, via the correlation provided by Jayasekera et al (2003). A site characteristic surface movement within the range of 60 mm to 70 mm was calculated. AS2870 notes that the surface movement arises from the possibility of moisture change at depths in excess of 1.8 m due to changing groundwater regimes. Note that the surface movement assumes there is no filling beneath footings/slabs.

It should be noted that the cutting of material, or placement of fill, may change the assessment of the characteristic surface movements for the areas disturbed. As a result, any changes to the existing surface profile will require reassessment based on the cut and fill profiles. It is recommended that any foundation systems be designed to accommodate any anticipated ground surface movements.

6.3 Earthquake Loading

In accordance with Australian Standard AS1170.4 Part 4 "Earthquake Actions in Australia", the site subsoil classification is considered to correlate to Class Ce for footings on soil. For earthquake design, a hazard factor (z) of 0.08 is recommended for the NSW area as per Figure 3.2(A) in AS 1170.4.

6.4 Geotechnical Design Parameters of Soil for Shallow Footings

The geotechnical design parameters presented in Table 6-2 may be adopted in conceptual design for shallow footings. However, further investigation should be conducted across the site to refine these parameters, if necessary for detailed design. These values have been determined based on the site conditions at the time of the investigation and may change if the soil is subject to prolonged rainfall or soaking during construction.

Table 6-2: Geotechnical Preliminary Design Parameters

Unit	Material	Unit Weight ¹	SPT N- Value	Undrained Shear Strength ¹ (S _u)	Poisson's Ratio ¹	Young's Modulus (E')	Shallow Foundation Allowable Bearing Capacity	Effective Cohesion, C'	Effective Friction, Φ'	'At-rest' Pressure Co-eff.	Active Earth Pressure Co-eff.	Passive Earth Pressure Co-eff.
		(kN/m³)		(kPa)		(MPa)	(kPa)	(kPa)	(°)	Ко	Ка	Кр
1	Topsoil Sandy Clay	17	-	-	-	-	-	-	-	-	-	-
2a	Alluvial Soil CLAY / Sandy CLAY; stiff.	17	11 to 15	70	0.3	22	145	5	25	0.58	0.41	2.46
2b	Alluvial Soil CLAY / Sandy CLAY; very stiff or better.	17	24 to 35	150	0.3	45	300	5	25	0.58	0.41	2.46
3 a	Residual Soil Clayey SILT / Sandy SILT; very stiff to hard	17	20 to 30	150	0.3	45	300	3	25	0.58	0.41	2.46
3b	Residual Soil Silty CLAY / CLAY; very stiff to hard	17	20 to 30	150	0.3	45	300	10	25	0.58	0.41	2.46

Notes: (1) These parameters have been estimated based on SPT values and published data.

6.5 Foundation considerations

All the boreholes undertaken within the site have indicated that the ground conditions are likely to be suitable for shallow foundations (subject to the finished ground levels following development). As the design loads are expected to be greater than a residential type building for substation or similar, typical slab on ground stiffened raft footing design in accordance with AS2870-2011 for residential foundation cannot be utilised and hence undertaking an engineered design is recommended.

6.5.1 Shallow Foundations for Structures

Given the highly reactive nature of the site, it is recommended that a stiffened raft footing system equivalent to Class H2 be designed for the structures. The footing must be founded on natural subgrade. All foundations must extend through any uncontrolled fill or weak soils to be founded on competent subgrade (subject to design for potential shrink-swell movements).

Please note that the minimum footing embedment depth should also take consideration of the overturning bending moment and/or uplift forces. The allowable bearing capacities set out in Table 6-2 may be adopted for the design.

It is recommended that all allowable bearing capacities be confirmed by an experienced geotechnical professional familiar with this report at the time of construction, prior to placement of blinding concrete and/or reinforcing steel.

6.5.2 Settlement

The soil profile is typically stiff to very stiff clays up to about 5.95 m depth. The estimated total settlement of an individual footing proportioned on the basis of the recommended bearing pressures is expected to be in the order of 0.5%B, where B is the footing width. Differential movement is expected to be about 50% of the maximum pad settlement. Such settlements will occur immediately upon loading and will be built into the structure without impacting structural design. The ground water table is assumed not to be above the base of the footing.

6.5.3 Axially Loaded Piles

Bored, screw (non-displacement) or driven (displacement) piles may be required to endure the uplift forces caused by wind actions as well as highly reactive nature of the ground condition. Differential upward movements between posts are considered minimal if uniform ground conditions are encountered in the adjacent post supporting the structure. The subsurface profile encountered during pile excavation should be observed by a geotechnical engineer to confirm the design assumptions.

Advice from an experienced piling contractor must be sought if piling requires pre-drilling into rock. Given that current scope of works did not involve coring into rock, further investigation may be required to identify weathering grade, strength and discontinuity of rock.

It is recommended that all piles be designed in accordance with the requirements of AS2159 – 2009. Using methods described in Woodward & Boitono (1961), the geotechnical parameters recommended for the pile design are shown in Table 6-3.

Table 6-3: Pile Design Parameters

Unit	Material Type	1 Average Ultimate Skin Friction f_s (kPa)	2 Average Ultimate End Bearing at Strata Base $f_b({\sf kPa})$
2 a	Alluvial Soil CLAY / Sandy CLAY; stiff.	45	600
2b	Alluvial Soil CLAY / Sandy CLAY; very stiff or better.	50	1350
3a	Residual Soil Clayey SILT / Sandy SILT; very stiff to hard	50	1350
3b	Residual Soil Silty CLAY / CLAY; very stiff to hard	50	1350

Note: 1 Only applicable if L/D≥4

2 Based on SPT blow count (N)

In order to assess pile capacity, a geotechnical strength reduction factor (Φ_g) should be applied to the above ultimate unit stresses in accordance with Table 4.3.2 of AS2159-2009. Selection of the geotechnical strength reduction factor (Φ_g) in accordance with AS 2159-2009 Table 3.2(A) is based upon a series of individual risk ratings with the final value of Φ_g dependant on the following factors:

- a) Site: the type, quantity and quality of testing;
- b) Design: design methods and parameter selection;
- c) Installation: construction control and monitoring;
- d) Pile testing regime: testing benefit factor based on percentage of piles tested and the type of testing. If some testing is carried out, an increase in the value of Φ_g may be possible depending on the type and extent of the testing. It is noted that Table 8.2.4(B) of AS 2159-2009 requires that 5% to 15% of piles should be subject to integrity testing if the value of Φ_g adopted by the structural designer exceeds 0.4;
- e) Redundancy: whether other piles can take up load if a given pile settles or fails.

Of the above factors, SMEC can only comment directly upon the site factors under a). The designer must determine the remaining individual risk factors b) through e), inclusive, with knowledge of the pile construction specification that will be applied to the construction contract.

Table 6-4 presents the assessed individual AS2159-2009 risk factors assigned by SMEC to site conditions only.

It should be noted that unit stress design values will vary for different pile diameters and founding depths, and different values may be applied depending on the type of pile adopted, founding depth, installation method, level of supervision, static load and pull-out testing (depending on the design philosophy i.e. pile spacing and whether uplift is the critical load). Pile design should be checked for lateral loading that may potentially occur.

Table 6-4: Individual Assigned Risk Factors - Site Conditions

Risk Factor	Typical Description o	f Risk Circumstances f	for Individual Risk Rating	Assigned Risk Factor
	1 (Very Low Risk)	3 (Moderate Risk)	5 (Very High Risk)	ractor
Geological complexity of site	Horizontal strata, well defined soil and rock characteristics	Some variability over site, but without abrupt changes in stratigraphy	Highly variable profile or features or steeply dipping rock levels or faults present on site, or combinations of these	3
Extent of ground investigation	Extensive drilling investigation covering whole site to an adequate depth	Some boreholes extending at least five pile diameters below the proposed foundation level	Very limited investigation with few shallow boreholes	3
Amount and quality of geotechnical data	Detailed information on strength and compressibility of the main strata	Boreholes confirming rock quality at proposed founding level for piles	Limited amount of simple in-situ testing or index tests only	3

Note: 1 - Refer to Table 4.3.2(A) in AS2159-2009 for details on risk factors.

6.5.4 Lateral Pile Capacity

It must be noted that no specific loading data has been provided for the magnitude, direction or frequency of expected loading conditions.

The preliminary determination of lateral capacity would utilise the conventional closed-form solutions developed by Broms, with further detailed analysis carried out using computer-based numerical methods.

Section 4.4.7 of AS2159-2009 outlines the procedure to determine ultimate geotechnical strength for a laterally loaded pile. The ultimate strength is given as the lesser of two values, depending on whether piles conform to "short-pile" or "long-pile" behaviour.

In short-pile behaviour, the ultimate lateral resistance of the soil surrounding the pile is fully mobilised along the entire length of the pile. In long-pile behaviour, the structural strength of the pile itself is fully mobilised before the ultimate soil resistance is achieved.

For piles constructed of grade 350 MPa steel, short-pile behaviour is expected – the ultimate lateral resistance of the soil surrounding the pile will likely be fully mobilised along the entire embedded length before the structural strength of the pile is fully mobilised.

For pile groups, the standard shows that design ultimate geotechnical strength is also taken as the lesser of two values:

- i) The sum of the design ultimate geotechnical strength of the individual piles in the group;
- ii) The design ultimate geotechnical strength of a block containing the piles and the soil between them.

Consideration should be given to the possibility for loss of lateral load capacity in the near surface soil. Environmental effects may also reduce lateral resistance. Additionally, separation between the pile and the surrounding ground (near-surface) may occur for piles subjected to cyclic lateral loading.

In addition to the ultimate geotechnical capacity of the pile, the pile must also be designed such that lateral deflections under serviceability loads are within allowable limits.

Given that specific loading data has not been provided for the magnitude, direction or frequency of expected loading conditions lateral deflection under serviceability loads must be checked once the specific structure loadings are available.

6.5.5 Uplift Forces

The uplift resistance may be calculated using the shaft resistance parameters, but with a reduction factor applied.

If tension piles are required to resist the uplift forces, an average ultimate skin friction of 35 kPa for stiff clays, 40 kPa for very stiff (or better) clays and 40 kPa for residual silt and clay soils can be adopted. Again, geotechnical reduction factors should be adopted to modify these values. A further geotechnical reduction factor of 0.4 is recommended for the calculation of uplift resistance of the piles.

6.6 Site Trafficability

The site was trafficable for a four-wheel drive vehicle during the investigation.

Problems may arise from disturbance of the upper level soil fabric resulting from the removal of the existing vegetation. This may limit trafficability for light weight construction vehicles and create difficulties for earthworks operations during wet season. It is recommended that vegetation be trimmed (mowed) and shrubs be cut to the ground level, which will preserve the crust and improve trafficability. Whereas clearing and grubbing would present issues if the crust is breached, and this would be more pronounced after rainfall events.

Should the upper soils become saturated during construction, the removal of the topsoil layer and placement of a temporary working platform (consisting of a geotextile placed under rock fill) may be required to allow access for light weight construction plant and road vehicles.

It is recommended that the following steps be taken to improve trafficability:

- The exposed surface in the construction area is proof rolled to provide a seal and assist in identifying weak or soft areas for treatment;
- Dedicated construction tracks are used to control site traffic and limit trafficability issues; and
- Provision and maintenance of adequate drainage conditions at this site is essential. It should be
 ensured that runoff is diverted away from the construction and access tracks to prevent ponding of
 water.

To assist in maintaining a workable construction site, the placement of a working platform as a final layer across structure/building platforms is recommended. The potential trafficability problems with this site should not be underestimated. This site will very quickly become untrafficable if appropriate drainage control measures, along with construction practices appropriate for the site conditions, are not maintained.

The contractor performing the works should fully inform themselves of the ground conditions at the site prior to commencement of earthworks. This requirement should be explicit in any earthworks specifications or

contract. Allowance should be made for the design, construction, and maintenance of a suitable working platform to support construction plant and heavy equipment such as piling rigs. Further advice can be provided by SMEC once details pertaining to design levels and construction plant are available.

6.7 Earthworks and Subgrade preparation

It is understood that minor cut and filling may will be required to create a level platform for construction. Earthworks procedures must be carried out in accordance with AS3798-2007 'Guidelines on Earthworks for Commercial and Residential Developments'.

The standard compaction test results indicated the near surface soils are dry of optimum moisture ranging from 1.9% to 4.0% in five of the sample and 0.4% and 1.5% wet of optimum moisture in three of the samples. Onsite surface clayey material will cause problems with trafficability and workability should this material be wet prior to or during construction.

Onsite surface clayey material will cause problems with trafficability and workability should this material be wet prior to or during construction. Options for earthworks at the site include:

- 1. Low performance fill platform allowing construction of solar arrays and access tracks constructed from general fill; and
- 2. Normal performance fill platform to suit construction of pavements and structures constructed from structural fill.

Construction of Option 1 would adopt the following procedure:

- Prepare the areas beneath the proposed works by trimming any vegetation to the ground level. It is
 recommended that long grass be trimmed (mowed) and shrubs be cut to the ground level, which will
 preserve the crust and improve trafficability.
 - Any settlement caused by decomposition of organic material within the topsoil is expected to have a small effect on the proposed construction.
- Place general fill in layers no thicker than 300 mm loose and compact uniformly with moisture conditioned to Standard optimum moisture content (OMC) ± 2%, and to the required minimum dry density ratio as given in Table 6-5.
- If the ground is moist, it is possible that the first layer of fill will not achieve the specified degree of compaction. In this case, the layer can be considered as a bridging layer allowing subsequent placement and compaction of general fill. If the ground is wet, then a thicker bridging layer may be required or granular fill may be considered.

Construction of Option 2 would adopt the following procedure:

- Prepare the areas beneath the proposed works by trimming any vegetation to the ground level. It is recommended that long grass be trimmed (mowed) and shrubs be cut to the ground level, which will preserve the crust and improve trafficability.
 - Any settlement caused by decomposition of organic material within the topsoil is expected to have a small effect on the proposed construction.
- Proof roll exposed subgrade using fully loaded water cart or similar to detect whether any soft spots
 exist. Zones that undergo excessive deflection or are unstable would require further treatment, the
 extent of which is best assessed at the time of construction. The treatment may involve excavation, and
 replacement with select fill, the use of a bridging layer potentially with geogrid and geotextiles. An
 experienced engineer should witness the proof rolling.
- Any imported select fill should comprise a well graded sand, crushed rock equivalent to VicRoads Class 4 crushed rock, ripped sedimentary rock, or suitable site derived filling. The maximum particle size after compaction should be 50 mm.

• The filling required to raise the subgrade should be placed in horizontal layers not greater than 250 mm loose thickness, uniformly compacted throughout, moisture conditioned to Standard optimum moisture content (OMC) ± 2%, and to the required minimum dry density ratio as given in Table 6-5.

The use of low reactive granular fill material is usually preferred as a structural fill. If it is elected to import low or non-reactive filling for structural filling the material specification will depend on the sensitivity of the structure to movement and the requirements of the designers. In the absence of specific design requirements, the following material limits are suggested as a guide:

- Maximum liquid limit: 50%
- Maximum plasticity index: 25%
- PI x %< 0.425 mm < 1200
- Potential swell in 4 day soaked CBR test < 0.5% (4.5 kg surcharge)
- Less than 20% retained on the 37.5 mm sieve (this will allow the implementation of conventional compaction control testing).

The required compaction specification will depend on the nature of the material being worked and its location. Suggested requirements are given in Table 6-5.

Table 6-5: Fill Compaction Requirements

Location	Material Type	Minimum Dry Density Ratio %	Moisture Range	
General Fill	Clays	95% Standard	±2% of Standard OMC*	
	Granular (non-reactive)	95% Standard	N/A	
Structural Fill	Clays	95% Standard	±2% of Standard OMC	
oti detal di i iii	Granular (non-reactive)	95% Standard	N/A	

^{*} OMC - Optimum Moisture Content

In the absence of specific design requirements for general fill, the material specifications and limits as suggested for Type-B fill in VicRoads Section 204 – Earthworks, can be used as a guide. It is understood that general fill will not be used in or around structures.

To ensure that desired construction standards are achieved it is suggested that any filling be tested at the minimum test frequency suggested in Table 8.1 of AS 3798-2007. "Earthworks for Commercial and Residential Developments", for the appropriate scale of the earthworks being carried out.

6.8 Material Suitability for Reuse

All site won material will require laboratory testing to confirm contamination status for reusability.

The site primarily consisted of topsoil over stiff to very stiff Clays of high plasticity. The use of high plasticity onsite clays should consider the potential reactivity of these materials which are susceptible to shrink-swell movements with changes in moisture content (i.e. shrinkage on drying and swelling on wetting). For this reason, these clays are usually considered unsuitable for use as structural fill (i.e. behind retaining walls and beneath structures).

The site won material may be used as general filling for access track construction subject to adequate compaction and selective rejection of any unsuitably over-wet material.

6.9 Excavation of Material and Ground Support

The soil materials encountered in the investigation can generally be excavated with conventional earth moving equipment such as excavators, backhoes, dozers, etc.

The excavatability of the rock mass (i.e. Granite) in unconfined situations is a function of several variables including rock strength, fracture spacing and size and orientation of the excavation. Depending on excavation depths, heavy ripping conditions should be expected which would require the use of larger plant (i.e. D9 or larger) together with rock breaking equipment to facilitate excavation and removal. It is recommended that a trial excavation be carried out to assess the general rippability of the rock and establish rates of production.

For dry batters cut into the typical stiff to very stiff clay, the slope angles in Table 6-6 are recommended for short and long-term conditions. The batter angles presented assume surcharge loads are kept clear of batter crests and surface water is diverted away from batters.

Table 6-6: Recommended Batter Angles

Material Type	Batter Height (m)	Temporary Condition (H:V)	Long Term Condition (H:V)
Alluvial CLAY	< 2	1:1	1.5 : 1
stiff to very stiff	2 – 3	1.5 : 1	*2:1

^{*}Flatter if vegetation and maintenance is required; i.e. 3:1

Batter angles of excavations must be witnessed, verified and best assessed by an experienced geotechnical engineer during works. Flatter batter angles may be required if adverse ground conditions are encountered.

6.10 Groundwater Control

Groundwater was not encountered during the site investigation. Localised flows associated with perched water layers are a possibility. If groundwater is encountered onsite it is anticipated that any flow emanating from these materials can be managed using sump pumping. This will require further assessment at the time of construction.

6.11 Erosion and Drainage

Eight Emerson class (EC) laboratory tests were carried out. Based on AS1289.3.8.1-2017, the results of the EC testing indicate that the soil samples have the following classifications:

- EC = 2 (moderately dispersive), for BH01, BH03, BH08, BH12 and BH16;
- EC = 3 (slightly dispersive), for BH10; and
- EC = 5 (non-dispersive), for BH26.

It is recommended to treat the site soil as moderately dispersive. Such soils are prone to erosion. To protect against erosion and dispersion exposed soils should be vegetated or covered. Proper site drainage will be required to divert surface water from sensitive areas in a controlled manner and prevent pooling water. It is recommended that where site construction drainage involves high concentration of flows, the drains be appropriately lined with geotextile or plastic to control erosion on the site.

Adequate site drainage will be required to remove runoff from site in a controlled manner and prevent pooling water. It is important that the site is well drained. The ground around all structures should slope away at a gradient of 1:50 for a minimum of 3 m, then fall into a stormwater collection system or overland flow paths to prevent water from ponding adjacent to structures.

6.12 Subgrade Evaluation and Preliminary Pavement Assessment

Laboratory testing indicates CBR values of 1.0% to 5.0% for the subgrade materials in the upper profile over the site. Swell percentages in the range 1.0% to 3.0% were measured.

SMEC recommends an initial design CBR value of 2.0% for clay subgrade soils based on the laboratory results. Site specific CBR testing to confirm the assumed design values is recommended for any critical or highly trafficked sections of pavement. Consideration could be given for subgrade treatments for the clay subgrade materials to allow more economical pavement design. Site clays must be treated as expansive.

It should be noted that there may be fill placement over areas of the development. In the areas of fill, the CBR values will be dependent on the source, quality, and compaction of the fill material.

6.13 Thermal Resistivity

The thermal resistivity of soil varies with soil type, density, structure and moisture content. Laboratory testing of three bulk samples was undertaken using the Dry Out Curve procedure which provided thermal resistivity and moisture content results that are plotted on Figure 3.

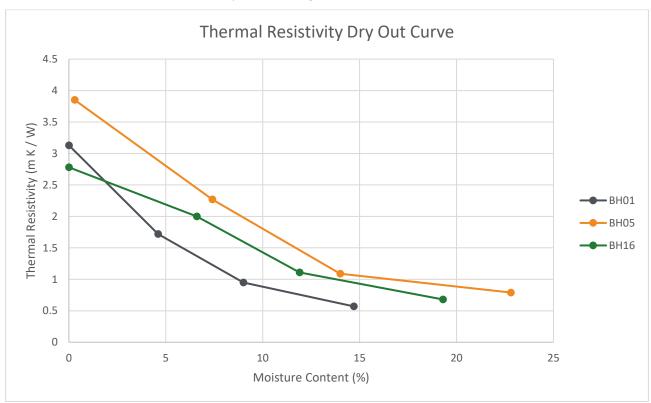


Figure 3: Thermal Resistivity Findings

Observations from the laboratory test results include:

- At field moisture content (FMC), thermal resistivity varies from 0.57 to 0.79 m K/W;
- Remoulded moisture contents (RMC) varied from 14.7% to 22.8%;
- Decreasing moisture content to 0.3% resulted in an increase in thermal resistivity of up to 3.85 m K/W; and
- Remoulded, compacted samples achieved approximately 95% density ratios of standard compaction.

Remoulding soil changes its structure and thermal resistivity and it is expected that soils used as fill or trench backfill may have a different thermal resistivity to that of the natural material onsite. Field measurements may be required if thermal resistivity's of natural materials are required.

6.14 Earth Resistivity Testing (Wenner Method)

The earth resistivity testing (ERT) of soil varies with soil type, density, structure and moisture content. Soil resistivity ground models were developed from the electrical resistivity testing undertaken at the substation and the rest of the site, and are summarised in Table 6-7 and Table 6-8.

Table 6-7: Substation Measurements - Soil Model Thermal Resistivity

Lavor	Depth	Resistivity		
Layer	(m)	(Ω-m)		
1	0 – 0.431	28.91		
2	0.431 to infinite	6.86		

Table 6-8: Field Measurements - Soil Model Thermal Resistivity

Leven	Depth	Resistivity
Layer	(m)	(Ω-m)
1	0 – 0.276	68.35
2	0.276 to infinite	5.34

These results have been further assessed as part of the durability assessment in Section 6.15.

6.15 Durability Assessment

Based on our experience, soils of low permeability, which are not in the presence of groundwater would have a low probability of being aggressive; groundwater was not encountered at depths of the proposed maximum investigation.

Using the aggressivity results provided in Table 5-5, exposure classifications for concrete piles founded in soil have been determined in accordance with AS2159-2009. Results indicate that for durability of concrete piles, the ground conditions have an exposure classification of non-aggressive to mild; soil type B considered – low permeability soils (e.g. silts and clays) or all soils above groundwater, as per AS2159-2009.

- The samples tested between 0 to 1.0 m bgl were classified as non-aggressive.
- The samples tested between 1.5 to 2.0 m bgl were classified as mild.
- Assuming piled foundations would extend to 1.5 m or deeper, a mild classification is considered here for the durability of concrete onsite.
- For mild rating conditions, minimum concrete strength of 50 MPa with a minimum of 30 mm cover for precast and prestressed piles and a minimum concrete strength of 32 MPa with a minimum of 75 mm cover for cast in place piles for a design life of 100 years.

Using the aggressivity results provided in Table 5-5 and the ERT results provided in Tables 6-7 and 6-8, exposure classifications for steel piles founded in soil have been determined in accordance with AS2159-2009. Results indicate that for durability of steel piles, the ground conditions have an exposure classification of non-aggressive to moderate; soil type B considered – low permeability soils (e.g. silts and clays) or all soils above groundwater, as per AS2159-2009.

- The samples tested between 0 to 0.431 m bgl were classified as non-aggressive.
- The samples tested between 0.431 m to infinite were classified as moderate.
- Assuming piled foundations would extend to 1.5 m or deeper, a moderate classification is considered here for the durability of steel onsite.
- For moderate rating conditions, the durability of steel piles requires a uniform corrosion allowance of 0.02 to 0.04 mm/year. It is recommended that steel posts be galvanised to achieve design lives.

6.16 Anticipated Construction Difficulties

Large trees and other vegetation were also identified onsite during the site walkover. Removal of these trees and their associated roots will be required as their roots can be deleterious to foundations. Care should be taken when removing the tree roots, as incomplete removal could lead to under-draining and ground settlement when the roots decompose. Conversely, the removal of the trees can alter the moisture condition of the surrounding soils and consequently alter their engineering properties to varying degrees depending on the soil type, effects due to moisture change can be such as settlement and cracking of the ground due to shrink-swell.

6.17 Construction Inspections

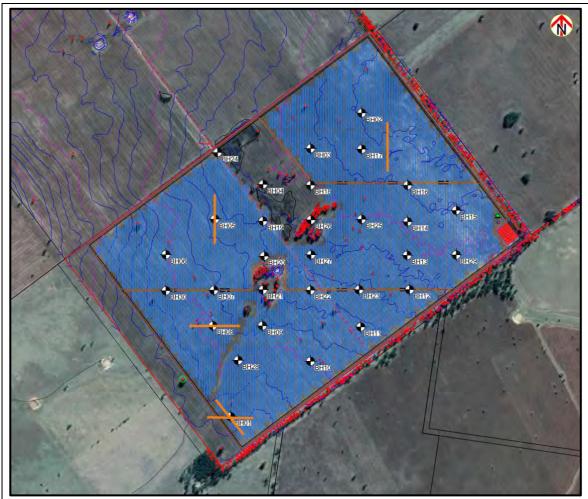
It is recommended that construction inspection of the footings / pile excavations be undertaken by a SMEC geotechnical engineer to confirm that the ground conditions are consistent with those anticipated.

7 Conclusion

From the findings of the site investigations, factual information and recommended geotechnical design parameters are provided in this report.

Depending on the final development plans for the site, should any design changes occur during the construction phase then further targeted investigations may be required to confirm ground conditions across the site.

Additional geotechnical investigation may be required after preliminary design stage of the development to delineate lateral extent of shallow rock encountered if effected for pile foundation.


8 Limitation

This report has been prepared by SMEC, on behalf of Lightsource BP for the West Wyalong Solar Farm development project. This report has been prepared in accordance with the Services Contract between SMEC and Lightsource BP. This report is prepared exclusively for Lightsource BP for this project only. This report should not be used for other purposes and by any third party.

This report has been prepared based on data available to SMEC at the time of preparing this report. The subsurface conditions provided in this report are indicative only and are based on available sub-surface testing records (i.e. borehole, standard penetration tests). The sub-surface testings were undertaken at the specific location on specific time and only to the depths investigated. The accuracy of advice and sub-surface conditions provided in this report may be different from the actual sub-surface conditions due to the variable geological processes and undetected sub-surface conditions between the test points.

This report should be used as an entirety and the sections of this report should not be used separately. SMEC cannot be held responsible for any interpretations, decisions and conclusions made by others based on the contents provided in this report. SMEC endeavoured to identify the risks associated with the design and construction. SMEC cannot be held responsible for any risks associated with design and constructions. There may be risks associated with the design and constructions that are not documented or discussed in this report due to the unforeseen site conditions, variation of sub-surface conditions or beyond the knowledge of SMEC designers. However, should there be any risks arise during the design and/or construction SMEC would be endeavoured to carry out a risk assessment of the potential hazards, if requested.

Appendix A Test Site Location Plan

LOCALITY PLAN

LEGEND:

BHXX - BOREHOLE

ELECTRICAL RESISTIVITY (ERT) TRAVERSE

NOTES:

BOREHOLE AND ERT SYMBOLS ARE NOT TO SCALE

TEST SITE LOCATION PLAN

Wyalong Solar Farm Geotechnical Investigation	PROJECT NO.:	3004768
Test Site Location Plan	FIGURE:	1
Client: Lightsource BP	DATE:	7/01/2019

BOREHOLE INVESTIGATION SCHEDULE		
LOCATION ID	EASTING (M)	NORTHING (M)
BH01	529681	6257971
BH02	530382	6259587
BH03	530110	6259399
BH04	529857	6259210
BH05	529576	6259028
BH06	529338	6258835
BH07	529594	6258646
BH08	529587	6258456
BH09	529855	6258460
BH10	530106	6258265
BH11	530379	6258448
BH12	530634	6258645
BH13	530622	6258828
BH14	530630	6259004
BH15	530884	6259067
BH16	530626	6259201
BH17	530382	6259394
BH18	530109	6259203
BH19	529856	6259010

BOREHOLE INVESTIGATION SCHEDULE		
LOCATION ID	EASTING (M)	NORTHING (M)
BH20	529857	6258832
BH21	529854	6258646
BH22	530108	6258641
BH23	530365	6258645
BH24	529614	6259383
BH25	530380	6259021
BH26	530111	6258981
BH27	530108	6258829
BH28	529721	6258271
BH29	530883	6258830
BH30	529338	6258643

NOTES:

- 1. EASTING AND NORTHING ARE IN UTM ZONE 55H
- 2. COORDINATES WERE MEASURED WITH A HANDHELD GPS DEVICE WITH AN ACCURACY OF $\pm\,5$ M
- 3. NO SURVEY HAS BEEN UNDERTAKEN TO CONFIRM THE ACCURACY OF THE TEST SITE LOCATIONS AND THEIR REDUCED LEVELS

Wyalong Solar Farm Geotechnical Investigation	PROJECT NO.:	3004768
Test Site Coordinates	FIGURE:	2
Client: Lightsource BP	DATE:	27/08/2018

Appendix B Site Photographs

Photo 1: Shallow pit excavated at BH03 for sample collection

Photo 2: Terrain near BH05

Photo 3: View of the relatively flat terrain near BH09

Photo 4 : Shallow pit excavated at BH10 for sample collection

Photo 5: Slightly undulating terrain at BH10

Photo 6: Shallow pit excavated at BH12 for sample collection

Photo 7: View of the site from BH14, showing near surface disturbance from ploughing

Photo 8 : Drill rig setup at BH19

Photo 9: Looking North-East from BH20 towards the group of trees in the centre of the site

Photo 10: Group of trees in the centre of the site near BH26

	Wyalong Solar Farm	PROJECT NO.:	30041768
SMEC	SITE PHOTOGRAPHS	PLATE No:	5
Member of the Surbana Jurong Group	CLIENT: Lightsource BP	DATE:	27/08/2018

Photo 11: Abandoned structure near BH26

Photo 12: View of the farm dam in the centre of the site, north-east of BH21

	Wyalong Solar Farm	PROJECT NO.:	30041768
SMEC	SITE PHOTOGRAPHS	PLATE No:	6
Member of the Surbana Jurong Group	CLIENT: Lightsource BP	DATE:	27/08/2018

Appendix C Borehole Logs and Explanatory Notes

Explanatory Notes of Abbreviations and Terms

Used on Borehole and Excavation Logs

General

Information obtained from site investigations is recorded on log sheets. The "Engineering Log - Borehole or Non Cored Borehole" presents data from drilling operations where a core barrel has not been used to recover material, and information is based on a combination of regular sampling and in-situ testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Engineering Log - Cored Borehole" presents data from drilling operations where a core barrel has been used to recover material - commonly rock. The "Engineering Log - Excavation" presents data obtained on the subsurface profile from observations of excavations, either natural or man-made. It may contain a scaled, graphical presentation of the typical excavation profile. Refusal of the excavation plant is noted should it occur.

As far as is practicable, the data contained on the log sheets is factual. Some interpretation is inevitable in the assessment of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classification is generally based on AS1726-2017.

Drilling Method

Code	Description
ADT	Auger drilling with TC-bit
ADV	Auger drilling V-bit
AS	Auger screwing
AT	Air track
CA	Casing advancer
CC	Concrete core
CTR	Cable tool rig
DB	Wash bore drag bit
HA	Hand auger
HAND	Hand methods
HF	Hollow flight auger
HMLC	Diamond core 62mm diameter
HQ	Wire line core barrel 64mm diameter
HQ3	Wire line core barrel 62mm diameter
NDD	Non destructive drilling
NMLC	Diamond core 52mm diameter
NQ	Wire line core barrel 47mm diameter
NQ3	Wire line core barrel 45mm diameter
PT	Continuous push tube
PQ	Wire line core barrel 85mm diameter
RAB	Rotary air blast
RC	Reverse circulation
RD	Rotary blade or drag bit
RR	Rock roller
RT	Rotary tricone bit
SD	Sonic drilling
TBX	Tube-X
VC	Vibro-core drilling
WB	Wash bore drilling

Drilling Penetration

Ease of penetration in non-core drilling

VE	Very easy
Е	Easy
F	Firm
Н	Hard
VH	Very hard

Support and Casing

Code	Description	Code	Description
С	Casing	Hw	114.3 mm
M	Mud	NW	88.9 mm
W	Water	PVC	150 mm

Core Run

Core lifts are identified by a line and depth with core loss per run as a percentage. Core loss is shown in the core run unless otherwise indicated.

Defect Spacing

The average distance between defects is measured parallel to the core axis in mm and may be expressed as a range or average.

Angle / Orientation

Angle from horizontal and orientation to magnetic north.

For inclined cored boreholes the Alpha and Beta angles are presented for orientated core. Alpha (α) is measured relative to the core axis, whilst Beta (β) is measured clockwise from the reference line looking down the core axis in the direction of drilling.

Excavation Method

N	Natural exposure
Х	Existing excavation
ВВ	Tractor mounted backhoe bucket
EX	Hydraulic excavator
EH	Hydraulic excavator with hammer
В	Bulldozer blade
R	Ripper

Water / Drilling Fluid

The drilling fluid used is identified and loss of return to the surface is estimated as a percentage, generally of each core lift.

Symbol	Description	
—	Water inflow	
—	Water outflow	
Water level: during drilling or immediately after completion of drilling		
	Groundwater level with date observed prior to introduction of fluids or after standpipe construction	
Not observed	The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole / test pit.	
Not encountered	The borehole / test pit was dry soon after excavation, however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole / test pit been left open for a longer period.	

Colour

The colour of a soil or rock is described in a moist/wet condition using simple terms, such as black, white, grey, red, brown, orange, yellow green or blue. These are modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours are described as a combination of these colours (e.g. orange-brown). Where a soil or rock consists of a primary colour with a secondary mottling it is described as (primary colour) mottled (first colour) and (secondary colour).

Description of Soil

- Soil name (BLOCK LETTERS)
- ii. Plasticity or particle size of soil
- Colour iii.
- Secondary soil components names & estimated proportions, iv. including their plasticity / particle characteristics, colour
- Minor soil components name, estimated proportions, including their plasticity / particle characteristics, colour
- Other minor soil components
- vii. Moisture condition
- viii. Consistency / density
- Structure of soil, geological origin
- Additional observations

Particle Size

Term		Grain Size
Clay		< 2 μm
Silt		2 – 75 µm
	Fine	0.075 – 0.21 mm
Sand	Medium	0.21 – 0.6 mm
	Coarse	0.6 – 2.36 mm
	Fine	2.36 – 6.7 mm
Gravel	Medium	6.7 – 19 mm
	Coarse	19 – 63 mm
Cobbles		63 – 200 mm
Boulders		> 200 mm

Fine Grained and Coarse Grained Soils

Term	Description
Fine Grained Soil (cohesive)	More than 35% of the material less than 63 mm is smaller than 0.075 mm (silts and clays)
Coarse Grained Soil	More than 65% of the material less than 63 mm is larger than 0.075 mm (sands, gravels and cobbles)

Descriptive Terms for Secondary and Minor Components

	In coarse grained soils				In fine grained soils	
Designation of Components	% Fines	Terminology	% Accessory coarse fraction	Terminology	% Sand / Gravel	Terminology
	≤5	trace	≤15	trace	≤15	trace
Minor	>5, ≤12	with	>15, ≤30	with	>15, ≤30	with
Secondary	>12	prefix	>30	prefix	>30	prefix

Plasticity – Fine Grained Soils

Liquid Limit (LL) %	Description
≤ 35	Low plasticity (L)
>35 to ≤ 50	Medium plasticity (I)
> 50	High plasticity (H)

Plasticity Chart-Fine Grained Soils

Consistency Terms – Fine Grained Soils

Term	Undrained shear strength (kPa)	Indicative SPT (N) Blow Count	Field Guide to Consistency
Very Soft (VS)	<12	0 – 2	Easily penetrated several centimetres by fist, exudes between fingers when squeezed in fist
Soft (S)	12 – 25	2 – 4	Easily penetrated several centimetres by thumb, easily moulded by light finger pressure
Firm (F)	25 – 50	4 – 8	Can be penetrated several centimetres by thumb with moderate effort, and moulded between the fingers by strong pressure
Stiff (St)	50 – 100	8 – 15	Readily indented by thumb but penetrated only with difficultly. Cannot be moulded by fingers
Very Stiff (VSt)	100 – 200	15 –30	Readily indented by thumb nail, still very tough
Hard (H)	>200	>30	Indented with difficulty by thumb nail, brittle
Friable (Fr)	-		Can be easily crumbled or broken into small pieces

Density Terms – Coarse Grained Soils

Term	Density Index (%)	SPT (N) Blow Count	
Very Loose (VL)	< 15	0 – 4	
Loose (L)	15 – 35	4 – 10	
Medium Dense (MD)	35 – 65	10 – 30	
Dense (D)	65 – 85	30 – 50	
Very Dense (VD)	> 85	>50	

Particle Characteristics - Coarse Grained Soils

Term	Description
Well Graded	Having good representation of all particle sizes
Poorly graded	With one or more intermediate size poorly represented
Gap graded	With one or more intermediate sizes absent
Uniform	Essentially of one size

Angularity - Coarse Grained Soils

	Rounded
	Sub-rounded
	Angular
O B	Sub-angular

Origin of Soil

Fill	Formed by humans		
Aeolian	Formed by wind		
Alluvial	Formed by streams and rivers		
Colluvial	Formed on slopes (talus)		
Estuarine	Formed in marine environments		
Lacustrine	Formed in lakes		
Residual	Formed by weathering insitu		

Soil Moisture

	Term	Code	Description
Б	Dry	D	Looks and feels dry and free running
Coarse Grained Moist		М	Soil feels cool, darkened in colour, soils tend to stick together, soil grains do not run freely through fingers and no visible free water
Coa	Wet	W	Soil feels cool, darkened in colour, soils tend to stick together, free water on remoulding
	Moist, Less than Plastic Limit	W < PL	Hard and friable or powdery, moisture content well below Plastic Limit
ined	Moist, Near Plastic Limit	W ≈ PL	Soil feels cool, darkened in colour, can be moulded, near Plastic Limit
Fine Grained	Moist, Wet of Plastic Limit	W > PL	Soil feels cool, dark, usually weakened, free water, moisture content well above Plastic Limit
	Wet, Near Liquid Limit W ≈ LL		Soil exudes easily
Wet, Wet of Liquid Limit		W > LL	Soil behaves as a liquid

Boundary Classifications

Soils possessing characteristics of two groups are designated by combinations of group symbols. For example, GW-GC, well graded gravel-sand mixture with clay binder.

Graphic Symbols

	Asphalt	1,1,1,1,1	МН
	СН	55	ML
1//	CI	(<u>#</u> 2)3 (5)35)	ОН
	CL	12 전자 : 지한 경	OL
##	Concrete	10 50 10 50 10 50	PT
***	Fill	<i>%</i>	SC
98	GC	%	SM
3900 3900	GM	33	SP
000	GP	F-12	SW
0.0	GW		

Soil Classification

Soils are described in general accordance with AS1726-2017 as shown below.

		N PROCEDU than 63 mm ar	RES and basing fractions on es	timated mass)		GROUP SYMBOL	PRIMARY NAME
n 0.075	0.075 ion is	CLEAN GRAVELS	Wide range in grain size and substantial amounts of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		GW	GRAVEL	
is larger tha	9/	GRAVELS More than half of coarse fraction is larger than 2.36 mm	(Little or no fines)	Predominantly one size or a range of sizes with more intermediate sizes missing, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		GP	GRAVEL
ım and	naked ey	S half of n 2.36 r	GRAVELS w/ FINES		excess of non-plastic fines, strength; ≥ 12% silty fines	GM	SILTY GRAVE
than 63 n	ole to the r	GRAVEL More than	(Appreciable amount of fines)	,	excess of plastic fines, strength; ≥ 12% clayey fines	GC	CLAYEY GRAVEL
the material less than More than 65% of the material is less than 63 mm and is larger than 0.075 mm A particle size of 0.075 is about the smallest size distinguishable to the naked eye SILTS AND A More than half of coarse fraction is larger than 2.36 mm CAAYS A material is less than 63 mm and is larger than 0.075 More than half of coarse fraction is larger than 2.36 mm I manually the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye A particle size of 0.075 is about the smallest size distinguishable to the naked eye	CLEAN SANDS	Wide range in grain size and substantial amounts of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		SW	SAND		
	of coarse fra 36 mm	(Little or no fines)	Predominantly one size or a range of sizes with more intermediate sizes missing, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		SP	SAND	
	SANDS w/ FINES (Appreciable	'Dirty' materials with excess of non-plastic fines, none to medium dry strength; ≥ 12% silty fines		SM	SILTY SAND		
	SANDS More the smaller	amount of fines)	'Dirty' materials with excess of plastic fines, medium to high dry strength; ≥ 12% clayey fines		SC	CLAYEY SANI	
an)75 is	IDENTIFIC	ATION PROCEDURE	S ON FRACTIONS <	0.075 mm		
less th	ze of 0.(V	DRY STRENGTH	DILATANCY	TOUGHNESS	GROUP SYMBOL	PRIMARY NAME
terial	ile si:	ND imit	None to low	Slow to rapid	Low	ML	SILT
ILS mal 075	artic	SILTS AND CLAYS Liquid Limit < 50%	Medium to high	≥ 12% clayey fines	Medium	CL, CI	CLAY
SOILS of the man 0.075	A part SILTS CLAY Liquid 50%	Low to medium	Slow	Low	OL	ORGANIC SIL	
NED 5% o ss ths	٨	Low to medium	None to slow	Low to medium	MH	SILT	
GRAINED than 35% on is less than		AND	High to very high	None	High	CH	CLAY
FINE GRAINED SOILS More than 35% of the material less than 63 mm is less than 0.075 mm		SILTS AND CLAYS Liquid Limit > 50%	Medium to high	None to very slow	Low to medium	ОН	ORGANIC CLAY
IIGHLY OF	RGANIC SO	ILS: readily ide	entified by colour, odou	ir, spongy feel and fred	uently fibrous texture	PT	PEAT

Description of Rock

- Rock name (BLOCK LETTERS)
- ii. Grain size and mineralogy
- iii. Colour
- Fabric and texture iv.
- Features, inclusions, minor components, moisture content and durability
- Strength
- vii. Weathering and/or alteration
- viii. Rock mass properties discontinuities and structure of rock
- Interpreted stratigraphic unit
- Additional observations including geological structure

Simple rock names are used to provide a reasonable engineering description, rather than a precise geological classification. The rock name is chosen by considering the nature and shape of the grains or crystals, the texture and fabric of the rock material, the geological structure and setting, and information from the geological map of the area. Further guidance on the naming of rocks can be found in AS1726-2017, Tables 15, 16, 17 and 18. Typical rock types are described below, though subject to site specific variations.

Rock Type	Description	Example of Rock Name		
Sedimentary	Formed by deposited beds of sediments, have grains that are cemented together and often rounded. Significant porosity	COMMON: Conglomerate, Breccia, Sandstone, Mudstone, Siltstone, Claystone ≥90% CARBONATE: Limestone, Dolomite, Calcirudite, Calcarenite, Calcisiltite, Calcilutite PYROCLASTIC: Agglomerate, Volcanic Breccia, Tuff		
Igneous	Formed from molten rock and have a crystalline texture. Typically massive and low porosity. Rock types are from coarse to fine grained.	HIGH QUARTZ CONTENT: Granite, Microgranite, Rhyolite MODERATE QUARTZ CONTENT: Diorite, Microdiorite, Andesite LOW QUARTZ CONTENT: Gabbro, Dolerite, Basalt		
Metamorphic	Formed when rocks are subject to heat and/or pressure and have typically have directional fabric. Typically have low porosity and crystalline structure. Rock types are from coarse to fine grained	FOLIATED: Gneiss, Schist, Phyllite, Slate NON-FOLIATED: Marble, Quartzite, Serpentinite, Hornfels		
Duricrust	Formed as part of a weathering profile and show evidence of being cemented in situ. Cementation is typically irregular and exhibits replacement textures.	Ferricrete (Iron oxides and hydroxides) Silicrete (Silica) Calcrete (Calcium carbonate) Gypcrete (Gypsum)		

Note: () denotes dominant cementing mineralogy

Terms describing dominate grain size in sedimentary rocks.

Term	Grain size
Coarse	Mainly 0.6 mm to 2 mm
Medium	Mainly 0.2 mm to 0.6 mm
Fine	Mainly 0.06mm (just visible) to 0.2 mm

Terms describing dominate grain size in igneous and metamorphic rocks

	ı
Term	Grain size
Coarse	Mainly greater than 2 mm
Medium	0.06 mm to 2 mm
Fine	Mainly less than 0.06 mm (just visible) to 0.2mm

Texture and Fabric Sedimentary rocks

Thickness	Bedding Term	
< 6 mm	Thinly laminated	
6 – 20 mm	Laminated	
20 – 60 mm	Very thinly bedded	
60 – 200 mm	Thinly bedded	
0.2 – 0.6 m	Medium bedding	
0.6 – 2 m	Thickly bedded	
> 2 m	Very thickly bedded	

Igneous rocks

Term	Definition		
Amorphous	Indicates that the rock has no obvious crystalline structure		
Crystalline	A regular molecular structure, showing crystal structure and symmetry.		
Cryptocrystalline	The texture comprises crystals that are too small to recognise under an ordinary microscope. Indistinctly crystalline.		
Porphyritic	Indicates the presence of phenocrysts (relatively large crystals in a fine grained ground mass) in igneous rocks.		
Flow banded	Indicates visible flow lines in volcanic rocks and some intrusive rocks		
Glassy	Entirely glass like. No crystalline units and without crystalline structure.		
Vesicular	A texture of volcanic rocks that indicates the presence of vesicles (small gas bubbles). Where the vesicles are filled with a mineral substance they are termed Amygdales and the texture is Amygdaloidal.		

Metamorphic

Term	Definition		
Foliation	The parallel arrangement of minerals due to metamorphic process, which shall be defined by the terms in weak, moderate and strongly foliated.		
Porphyroblastic	A texture indicating the presence of porphyroblasts (larger crystals formed by recrystallization during metamorphism, such as garnet or staurolite in a mica schist).		
Cleavage	A type of foliation developed in fine grained metamorphic rocks such as slates.		

Bedding and Fabric Development

Туре	Definition		
Massive	No obvious development of bedding – rock appears homogeneous		
Poorly Developed	Bedding is barely obvious as faint mineralogical layering or grain size banding, but bedding planes are poorly defined.		
Well Developed	Bedding is apparent in outcrops or drill core as distinct layers or lines marked by mineralogical or grain size layering.		
Very Well Developed	Bedding is often marked by a distinct colour banding as well as by mineralogical or grain size layering.		
Indistinct fabric	There is little effect on strength properties		
Distinct Fabric	The rock may break more easily parallel to the fabric		

Rock Strength

Term (Code)	UCS (MPa)	Is ₍₅₀₎ (MPa)	Field Guide to Strength
Very Low (VL)	0.6 – 2	> 0.03 to ≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low (L)	2 - 6	> 0.1 to ≤ 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blow of the pick point; has dull sound under hammer. A piece of core 150 mm long 50 mm in diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium (M)	6 - 20	> 0.3 to ≤ 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm in diameter can be broken by hand with difficulty.
High (H)	20 - 60	> 1 to ≤ 3	A piece of core 150 mm long by 50 mm in diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High (VH)	60 -200	> 3 to ≤ 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High (EH)	>200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Rock strength is assessed by laboratory Uniaxial Compressive Strength (UCS) testing and/or Point Load Strength Index (PLT) testing to obtain the Is₍₅₀₎ the strength table implies a 20 times correlation between Is₍₅₀₎ and UCS used for classification. Note however, multiplier may range from 4 (e.g. some carbonated and low strength rocks) to 40 (e.g. some igneous rocks and/or some high strength rocks). A site specific correlation based on testing, previous investigation or literature may be used where available. These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considered weaker due to the effect of rock defects.

Visual Log

A diagrammatic plot of defects showing type, spacing and orientation in relation to the core axis.

	Defects open in situ or clay sealed
	Defects closed in-situ
•••••	Drill induced fractures or handling breaks
	Infilled seam

Rock Weathering and or Alteration Classification

Term (Code)		Definition	
Residual soil (RS)		Soil developed on extr rock. The rock mass s substance fabric are n but the soil has not be transported.	tructure and o longer evident
Extremely we (EW) Extremely alte		Rock is weathered to s that it has 'soil' proper disintegrates or can be but the texture of origin	ties, i.e, it either e remoulded in water,
(HA)	Distinctly weathered (DW)* Distinctly Altered (DA)	Whole rock material is discoloured usually by extent that iron staining or bleaching and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original rock substance is no longer recognisable Whole rock material is discoloured usually by staining that original colour of the fresh rock is no longer.	*Where is it not practical to distinguish between 'HW' and MW'. Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores
Altered (MA)		rock is no longer recognisable	
Slightly weathered (SW) Slightly altered (SA)		Rock is slightly discold or no change of streng	
Fresh rock (F)		Rock shows no sign or staining.	f decomposition or

Rock Core Recovery

TCR = Total Core Recovery (%)

Length of Core Recovered x 100 Length of Core run

SCR = Solid Core Recovery (%)

Sum Length of Cylindrical Core Recovered x 100 Length of Core run

RQD = Rock Quality Designation (%)

Sum Length of Sound Core Pieces > 100mm in length

Length of Core run

x 100

Types of Discontinuities

Term	Code	Description	
Parting	Pt	A defect parallel or sub-parallel to a layered arrangement of mineral grains or micro-fractures, which has caused planar anisotropy in the rock substance.	
Joint	Jt	A defect across which the rock substance has little tensile strength, but that is not related to textural or depositional features within the rock substance.	
Sheared Zone	SZ	A zone with roughly parallel planar boundaries of rock substance consisting of closely spaced joints with smooth slickensided surfaces often curved. The joints divide the rock mass into unit blocks usually of lenticular or wedge shape.	
Crushed Zone	CZ	A zone or seam with roughly parallel planar boundaries of rock substance composed of disoriented, usually angular, fragments of the host rock substance	
Seam	Se	A zone or seam with roughly parallel boundaries, infilled by soil (IS) or decomposed rock (DS)	
Fault	F	A fracture (defect) in rock along which there has been an observable amount of displacement.	
Vein	Ve	A zone of minerals intruded into a joint or fissures.	

Type of Structures

Term	Code	Description		
Bedding	Bg	A layered arrangement of minerals parallel to the surface of deposition which has caused planar anisotropy in the rock substance.		
Cleavage	С	An alignment of fine grained minerals caused by deformation.		
Schistosity	SH	A layered arrangement of minerals to each other		
Foliation	Fo	A planar alignment of minerals caused by deformation.		
Void	Vo	A completely empty space		
Dyke	DK	Sheet-like bodies of igneous rock that cut across sedimentary bedding or foliations in rocks. They may be single or multiple in nature		
Sill	SI	A sill is an intrusion of magma that spreads underground between the layers of another kind of rock		
Contact	Cn	A contact between intrusive and stratigraphic units.		
Boundary	Bd	A distinct boundary between two stratigraphic units		

Note: Drill breaks (DB) and handling breaks (HB) are not included as natural discontinuity.

Discontinuity Spacing

Spacing (mm)	Description	
>6000	Extremely Widely Spaced	
2000 - 6000	Very Widely Spaced	
600 - 2000	Widely Spaced	
200 - 600	Medium Spaced	
60 - 200	Closely Spaced	
20 - 60	Very Closely Spaced	
<20	Extremely Closely Spaced	

Discontinuity Planarity

Code	Description
Cu	Curved – A defect with a gradual change in orientation
lr	Irregular – A defect with many sharp changes in orientation
Pl	Planar – Defect forms a continuous plane without variation in orientation
St	Stepped – A defect with distinct sharp steps or step
Un	Undulose – A defect with undulations
Vu	Vuggy – An open void with crystallisation
Wv	Wavy - A wavy defect surface

Discontinuity Roughness

Abbreviation	Description
Ro	Rough – Many small surface irregularities generally related to the grain size of the parent rock
Sm	Smooth – Few or no surface irregularities related to the grain size of the parent rock
Po	Polished – Planes have a distinct sheen or a smoothness
SI	Slickensided – Planes have a polished, grooved or striated surface consistent with differential movement of the parent rocs along the plane
VR	Very rough – many large surface irregularities, amplitude generally more than 1mm

Infill Material

Code	Name	Code	Name
Ca	Calcite	Gp	Gypsum
Ch	Chlorite	Mn	Manganese
Cl	Clay	MS	Secondary mineral
Co	Coal	Ру	Pyrite
Fe	Limonite / Ironstone	Um	Unidentified mineral
Fe CI	Iron oxide clay	Qz	Quartz
FI	Feldspar	Х	Carbonaceous

Discontinuity Observation

Term	Code	Description
Clean	CN	No visible coating or infill
Stain	SN	No visible coating or infill but surfaces are discoloured by mineral staining
Veneer <1 mm	VNR	A visible coating or soil or mineral substance but usually unable to be measured. If discontinuous over the plane, patchy veneer.
Coating >1 mm to <10 mm	СТ	A visible coating or infilling of soil or mineral substance. Describe composition and thickness.
Filling (Filled) >10 mm	FLD	A visible filling of soil or mineral substance. Describe composition and thickness.

Samples and Field Tests

Code	Description
В	Bulk disturbed sample
BLK	Block sample
С	Core sample
DS	Small disturbed sample
ES	Soil sample for environmental testing
EW	Water sample for environmental testing
FP	Pressuremeter
G	Gas sample
Н	Hydraulic fracturing
HP	Hand penetrometer test
T	Impression device
Is ₍₅₀₎	Point Load Index
K	Permeability
LB	Large bulk disturbed sample
N	Standard penetration test result (N* denotes SPT sample recovery)
0	Core orientation
Р	Piston sample
PID	Photoionisation detector reading in ppm
R	Hammer bouncing / refusal
SPT	Standard Penetration Test
U	Undisturbed push in sample
UCS	Uniaxial Compressive Strength
U50	Undisturbed tube sample (50 mm diameter)
U75	Undisturbed tube sample (75 mm diameter)
VS	Vane shear test
• (A)	Axial Test
O (D)	Diametral Test
	Irregular Lump test

Laboratory Tests

Code	Description
ACM	Asbestos Containing Material
CD	Consolidated Drained
CU	Consolidated Undrained
LL	Liquid Limit
LS	Linear Shrinkage
MC	Moisture Content
MDD	Maximum Dry Density
OMC	Optimum Moisture Content
PBT	Plate Bearing Test
PI	Plasticity Index
PL	Plastic Limit
PSD	Particle Size Distribution
$ ho_{ t b}$	Bulk Density
$ ho_{\scriptscriptstyle p}$	Particle Density
$ ho_{\scriptscriptstyle d}$	Dry Density
UU	Undrained Unconsolidated

Backfill / Standpipe Detail

Symbol	Description	Symbol	Description
	Cement seal		Filter pack: sand filter
	Grout backfill		Filter pack: gravel filter
	Blank pipe		Bentonite seal
	Slotted pipe		Cutting – excavated material backfill
	Surface Completion: Monument Above Ground		Surface Completion: Gatic Ground Monument

Completion Details

Туре	Description
Collapse	Exploratory hole collapsed before reaching planned depth
Equipment Failure	Boring or excavator equipment operational failure
Flooding	Flooding of excavation
Machine Limit	Limit of machine capability reached
Obstruction	Obstruction preventing further advancement
Possible services	Indication of possible services below
Services present	Services encountered during exploratory hole
Squeezing	Hole squeezing boring equipment
Target Depth	Depth reached as planned
Target Depth Instrumentation Installed	Depth reached as planned instrumentation installed
Target Depth Standpipe Installed	Depth reached as planned open standpipe constructed
Material Refusal	Material preventing further advancement

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH01
PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 529681.0, N: 6257971.0 (MGA94 Zone 55) SURFACE ELEVATION : 235.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: NR

DATE ST	ARTE	ED : 2	26/07/20	18 D <i>A</i>	ATE (COMP	LETE	ED : 26/07/2018	3 DATE LOGGED : 26/07/2018 L	_OGGED B	SY : /	AS		CHECKED B	Y:NR
	С	RILLI							MATE	ERIAL					
BRILLING & CASING DRILLING FLUID SS	VE F PENETRATION VH	GROUND WATER LEVELS	SAMPLES & FIELD TESTS		DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe	MATERIAL DESCRIPTION ME: plasticity or particle characteristic, colo secondary and minor components NAME: grain size, colour, texture and fabric atures, inclusion and minor components	our, c,	MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTURE & Other Observat	ions
A A				Ϊ,	0.0		СН		Y high plasticity, grey-brown, fine grain sand, w		D		TOPSOIL		
			0.50m SPT 1 8,8,0 N*=8	234.5	- 0.5 —			CLAY: high	plasticity, brown, trace fine to medium grain sar bright grain sare and constitution of the same same sare and		D to M	F-St	0.30: rootlets	s to 0.5 m	
— ADV — No Fluid — No Fluid —		Not Encountered	0.95m 1.00m SPT2 10,12,0 N*=12 1.45m 1.50m SPT 3 9,11,0 N*=11	233.0 233.5	1.0 —		СН	1.50m: beco grained sand	oming mottled pale orange-brown, trace fine to i d, trace sub-angular gravel	medium			1.50: recover	ry of quartz gravel	
			2.50m SPT 4 13,12,0 N*=12	0 232.5	- - 2.5 — - -			2.50m: beco coarse grain	oming pale grey-brown mottled red, trace mediu ed sand	um to	М	St			
			2.95m	231.5 232.	3.5 —								3.50: auger ç	grinding slightly	
AS Aug ADV Aug ADT Aug HF Hol WB Wa RR Rog SD Sor NDD Noi	nd aug ger scri ger drill ger drill llow flig ash-bor ck rolle nic drill n destr ntinuou	ewing ling with ling with the auge e drilling r ing uctive o	n TC bit er g Irilling	231.0	0000000000	▼ L	Id/mm.evel of Orilling vater in	Very Hard / Refusal /yy n Date shown water level	SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample W Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("sample taken) R Hammer Bouncing / Refusal U50 Undisturbed Sample (50mm dia) U75 Undisturbed Sample (75mm dia) V Vane Shear; peak/remouded(kPa) PT Push Tube MC Moisture Content	MOISTU D DI M M W W PL PI	ased of ssificat	SCRIP' on Unifition Sy	ied	S F	

See Explanatory Notes for details of abbreviations & basis of descriptions.

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH01
PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

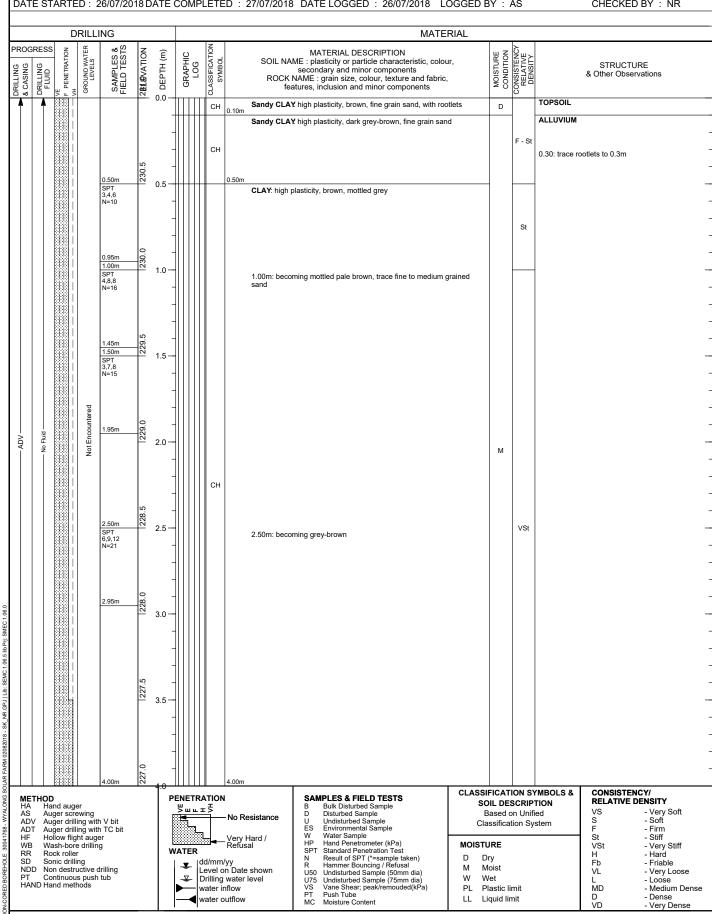
POSITION : E: 529681.0, N: 6257971.0 (MGA94 Zone 55) SURFACE ELEVATION : 235.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: NR

DATE STA	ARTE	D : 2	26/07/20	18 D	ATE (COMP	LETE	D : 26/07/2018	B DATE LOGGED :	26/07/2018 LC	OGGED B	SY : /	AS		CHECKED	BY : NR
		RILLI	NG							MATE	RIAL					
& CASING BA DORILLING BA DORILLING SEPUID SE	VE EF PENETRATION VH			2BLEVATION	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe	MATERIAL DESCR ME : plasticity or particle secondary and minor co NAME : grain size, colour atures, inclusion and mino	IPTION characteristic, colou omponents r, texture and fabric,		MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Obser	RE vations
- ADV		Not Encountered	SPT 5 15,14,0 N°=14 4.45m 4.45m 5.50m SPT 6 19,16,0 N°=16	1230.0 1230.5	4.5		СН		plasticity, mottled red and g	rey, with fine to medi		М	St	ALLUVIUM		-
			5.95m	227.5 228.0 228.5	6.5 —			5.95m Hole Termin Target Dept	nated at 5.95 m h				VSt			-
AS Aug ADV Aug ADT Aug HF Holl WB Was RR Roc SD Son NDD Non PT Con HAND Han	nd auge ger screger drill ger drill ger drill llow flig ish-bore ck rollen in destru ntinuou nd meth	ewing ing with ing with auge e drilling ring uctive constructive constructions.	n TC bit er g drilling	227.0	bossesses	₹ L	dd/mm.	Very Hard / Refusal /yy n Date shown water level	SAMPLES & FIELD B Bulk Disturbed Sample U Undisturbed Sample U Undisturbed Sample SE Environmental Sar W Water Sample HP Hand Penetromete SPT Standard Penetral N Result of SPT (*=s Hammer Bouncing U50 Undisturbed Sample V5 Vane Shear, peak PT Push Tube MC Moisture Content	mple ple ple pr (kPa) fon Test	MOISTU D DI M M W W PL PI	ased of ssificat	SCRIP' on Unificion Sys	ed	CONSISTEN RELATIVE E VS S F St VSt H Fb VL L MD D VD	CY/ IENSITY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

PROJECT: Wyalong Solar Farm


HOLE NO: **BH02** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530382.0, N: 6259587.0 (MGA94 Zone 55) SURFACE ELEVATION: 231.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: NR

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO : BH02 PROJECT NUMBER : 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530382.0, N: 6259587.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: NR

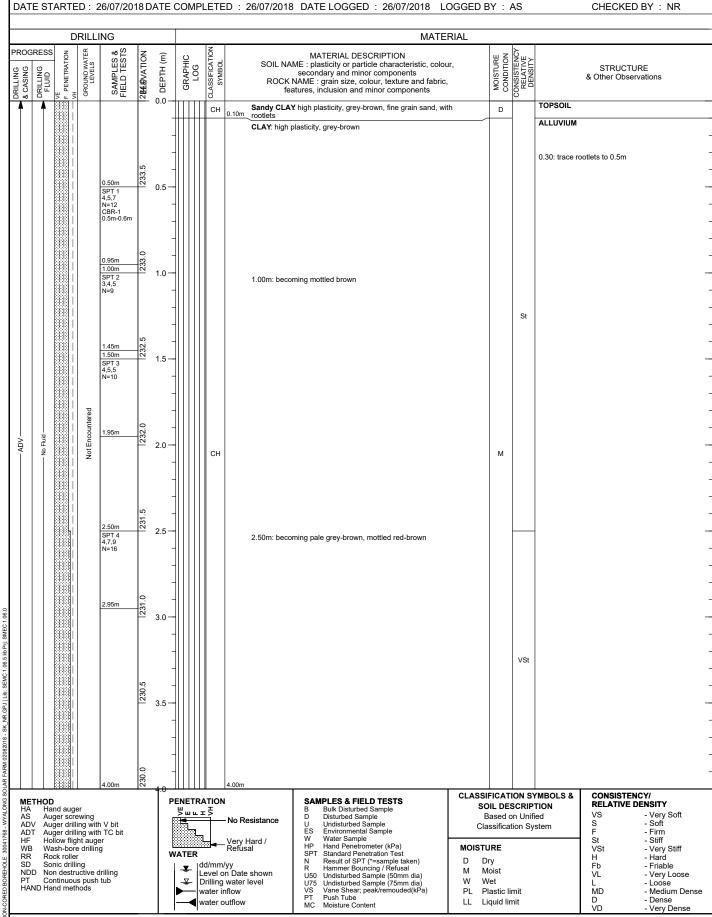
DATE STA	ARTE	ED : 2	26/07/20	18 D	AIE (COMP	LETE	:D : 27/07/2018	B DATE LOGGED	: 26/07/2018 L	LOGGED E	SY : /	AS		CHECKEL	DBY: NR
		RILL	ING							MATE	ERIAL					
BRILLING SSASING DRILLING SSASING PRILLING FLUID	VE F PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2EL:BVATION	o DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe:	MATERIAL DESC ME : plasticity or particl secondary and minor NAME : grain size, colo atures, inclusion and mi	RIPTION e characteristic, cold components our, texture and fabri	our,	MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Obse	
ADV—No Fluid—		Not Encountered	5.50m SPT 11,16,25 N=36 4.45m	225.5 226.0 226.5	4.5 —		СН	CLAY: high	plasticity, pale grey, mottl	ed red-brown		М	Н	ALLUVIUM	nds of sandy silt	to 5.95m
			5.95m	223.0 223.5 224.0 224.5 225.0	- 6.0 —			5.95m Hole Termin Target Deptt	ated at 5.95 m							
METHOD HA Han AS Aug ADV Aug HF Holli WB Was RR Roc SD Son NDD Non PT Con HAND Han	er drill er drill ow flig sh-bor k rolle ic drill destr tinuou d met	ewing ling witl ling witl ght augo e drillin er ing uctive ous s push hods	n TC bit er g drilling tub	104	500000000000000000000000000000000000000	▼ L	Id/mm.	Very Hard / Refusal /yy n Date shown water level	SAMPLES & FIELD B Bulk Disturbed Samp U Undisturbed Samp U Undisturbed Samp ES Environmental S W Water Sample HP Hand Penetrom SPT Standard Penetro N Result of SPT (R Hammer Bounci U50 Undisturbed Sar U75 Undisturbed Sar U75 Undisturbed Sar VS Vane Shear; pes PT Push Tube MC Moisture Conten	sample le nple sample sample ster (kPa) atton Test =sample taken) ng / Refusal nple (50mm dia) nple (75mm dia) ak/remouded(kPa)	MOISTL D DO M M W W PL PI	ased of ssifications	SCRIP' on Unifition Sy	ied	CONSISTEI RELATIVE VS S F St VSt H Fb VL L MD D VD	NCY/ DENSITY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

See Explanatory Notes for details of abbreviations & basis of descriptions.

SMEC AUSTRALIA

SMEC

PROJECT: Wyalong Solar Farm : Lightsource BP LOCATION: Wyalong West


CLIENT

HOLE NO: **BH03** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530110.0, N: 6259399.0 (MGA94 Zone 55) SURFACE ELEVATION: 234.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

See Explanatory Notes for details of abbreviations & basis of descriptions.

SMEC AUSTRALIA

SMEC

CLIENT : Lightsource BP PROJECT: Wyalong Solar Farm LOCATION : Wyalong West

HOLE NO: BH03 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

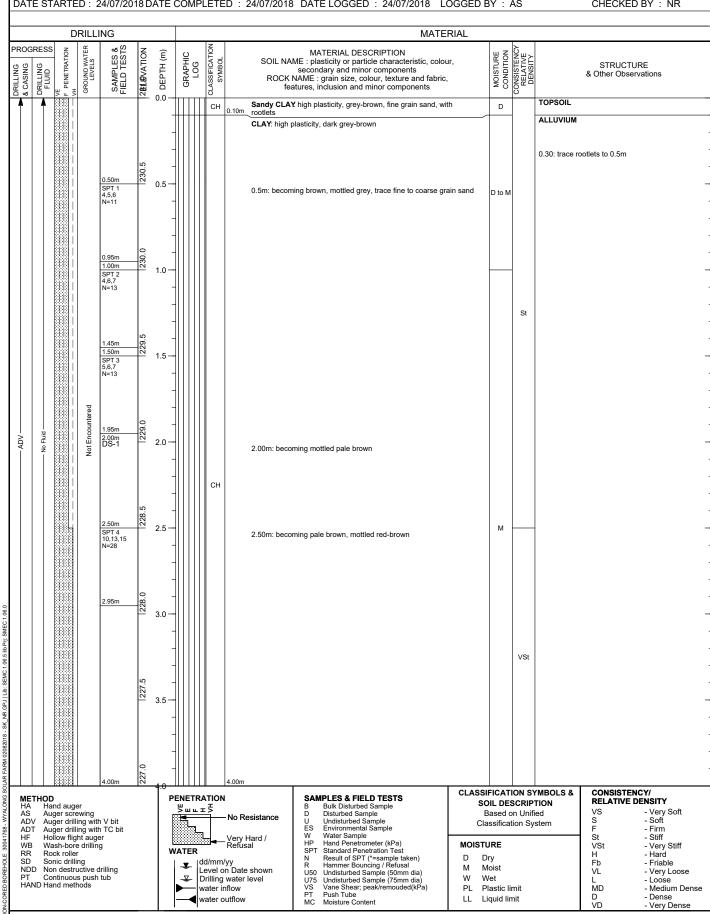
POSITION : E: 530110.0, N: 6259399.0 (MGA94 Zone 55) SURFACE ELEVATION : 234.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: NR

D/ 1.1 L 0 1.7									3 DATE LOGGED : 26/07/2018					CHECKED BY: NR
		RILLI							MA	ATERIAL				
DRILLING & CASING DRILLING FLUID SS	VE F PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2BUDVATION	. DЕРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	SOIL NA ROCK fe:	MATERIAL DESCRIPTION ME: plasticity or particle characteristic, secondary and minor components NAME: grain size, colour, texture and fa atures, inclusion and minor components		MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTURE & Other Observations
ADV		Not Encountered	SPT 5 6,12,13 N=25 4.45m 5.50m SPT 6 13,20,20 N=40	:28.5	4.0		СН	CLAY : high ∣	plasticity, pale grey-brown, mottled red-brown, mot	wn	М	VSt	ALLUVIUM	
			5.95m	1227.5	6.5 —			5.95m Hole Termin Target Depti	ated at 5.95 m			Н		
METHOD HA Han AS Aug ADT Aug HF Holl WB Was RR Roci SD Son NDD Non	er dril er dril ow flig sh-bor k rolle ic drill destr tinuou	rewing Iling with Iling with ght augo re drillin er ling ructive o us push	n TC bit er g drilling	226.0 1226.5	0000000000	<u>₹</u>	Id/mm/	Very Hard / Refusal (yy n Date shown water level	SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample W Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("=sample taken) Hammer Bouncing / Refusal UTO Undisturbed Sample (50mm dia)	MOISTU D D M W	Based of states	SCRIP on Unif tion Sy	ied	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard Fb - Friable VL - Very Loose L - Loose MD - Medium Dense

PROJECT: Wyalong Solar Farm


HOLE NO: **BH04** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 529857.0, N: 6259210.0 (MGA94 Zone 55) SURFACE ELEVATION: 231.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: NR

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH04
PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 529857.0, N: 6259210.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

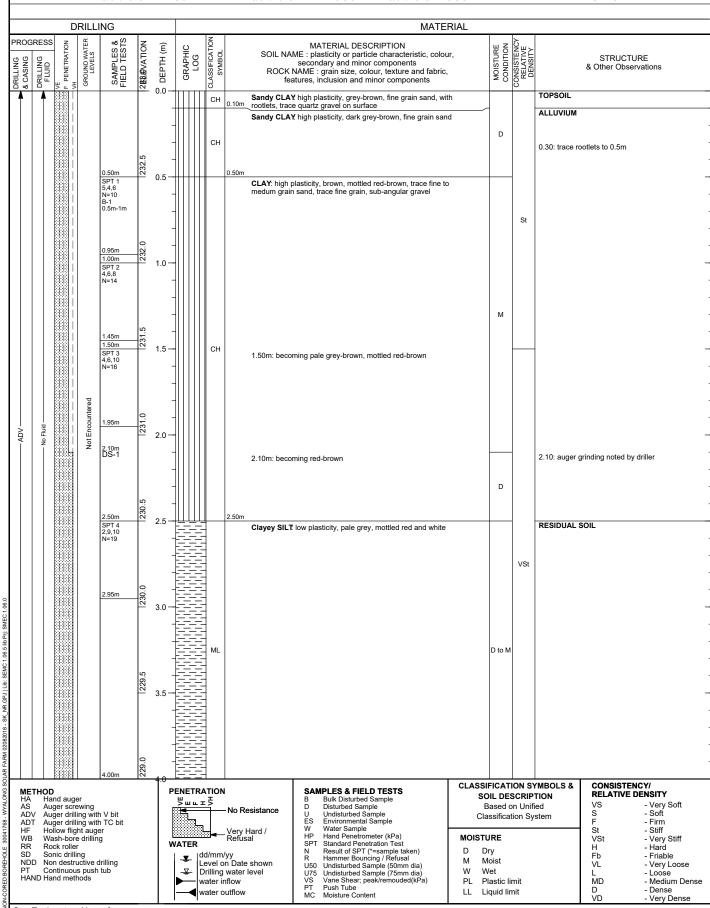
RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: NR

DATE S	STARTE	ED : 2	24/07/20	18 D	ATE C	COMP	LETE	D : 24/07/2018	B DATE LOGGED	: 24/07/2018 L	OGGED B	Y : /	AS		CHECKE	BY: NR
	Г	DRILLI	ING							MATE	RΙΔΙ					
PRILLING & CASING DRILLING DRILLING	SS g			2 E L®VATION	DЕРТН (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA	MATERIAL DESC ME : plasticity or particl secondary and minor NAME : grain size, colo	RIPTION e characteristic, colou components		DISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Obse	JRE rvations
BRILLING & CASING DRILLING	VE PE	GROL	SPT 5 11,14,17	2 E E.E	出 4.0 —	- ₽ 	CLAS	CLAY: high	atures, inclusion and mi plasticity, pale brown, mo	nor components		₩ 8	CON	ALLUVIUM		
- ADV	STATE AND ADDRESS OF THE PARTY	Not Encountered	5.50m SPT 6 13,17,19 N=36	225.5 226.0	4.5 —		СН	coarse grain	ming pale grey, mottled r			М	н		sed moisture cor	itent
	,		5.95m	225.0	-			5.95m								
				224.5	6.0 —			Hole Termin Target Depti	ated at 5.95 m							
				1224.0	7.0 — - -											
				223.0 223.5	7.5 —											
METHO HA H AS A ADV A ADT A HF H WB V RR SD S NDD N PT C HAND H	METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit AUGER AUGER TO HAND Hand BOOK HAND HAND HAND HAND HAND HAND HAND HAND				000000000000000000000000000000000000000	₹ L	Id/mm.	Very Hard / Refusal (yy n Date shown water level	SAMPLES & FIELD B Bulk Disturbed Samp U Undisturbed Sam ES Environmental S W Water Sample HP Hand Penetrom SPT Standard Penetr N Result of SPT (**) R Hammer Bounci U50 Undisturbed Sar U75 Undisturbed Sar U75 Undisturbed Sar VS Vane Shear; pea	ample le nple ample ster (kPa) ation Test =sample taken) ng / Refusal nple (50mm dia) nple (75mm dia) k/remouded(kPa)	MOISTU D DI M M W W PL PI	ased of ssifications of the state of the sta	SCRIP' on Unificion Sys	ied	CONSISTEI RELATIVE I VS S F St VSt H Fb VL L MD D VD	JCY/ DENSITY - Very Soft - Soft - Firm - Sulif - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

See Explanatory Notes for details of abbreviations & basis of descriptions.

PROJECT: Wyalong Solar Farm


HOLE NO: BH05 PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 4.8 m

POSITION : E: 529576.0, N: 6259028.0 (MGA94 Zone 55) SURFACE ELEVATION : 233.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: NR

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH05
PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 4.8 m

POSITION : E: 529576.0, N: 6259028.0 (MGA94 Zone 55) SURFACE ELEVATION : 233.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: NR

DAI	E 5	IAR	ED:	25/07/20)18 L	JAIE	COMPL	EIE	D : 25/07/2018	DATE LOGG	ED . 25/07/201	8 LUGGE	DBA:	A5		CHECKE	DRA: NK
DRILLING MATER											ΛΔΤΕΡΙΔΙ	RIAL					
DRILLING & CASING	_	S g	ROUND WATER	SAMPLES & FIELD TESTS	2 E 9.EVATION	-0. DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	ROCK	ME : plasticity or p secondary and n NAME : grain size	DESCRIPTION particle characteristic ninor components , colour, texture and and minor componen	c, colour,	MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTO & Other Obse	JRE rvations
ADV —	No Fluid		Not Encountered	SPT 5 2,12,14 N=26	1228.5	4.5 -		ML	(continued) 4.00m: beco 4.20m: beco	ming orange-brown	grey, mottled red and	d white	D	VSt	RESIDUAL	SOIL	- - - - -
				4.80m SPT 6 5/140mm HB N=R 4.94m	228.0	5.0 -	-			ated at 4.80 m sal on inferred gran	ite rock / boulder (HV	V-MW)					- - -
					[227.5	5.5-	- - - -										- - - -
					[227.0	6.0 -	-										- - - -
					1226.5	6.5-	- - - -										- - -
06.5 lib Prj: SMEC 1.06.0					1226.0	7.0 -											- -
02082018 - SK_NR.GPJ Lib: SEMC 1					225.5	7.5 -											- - - -
ALONG SOLAR FARM	тно	D land au	iger		225.0	9.0 I	PENETRA				rbed Sample	CLA	SOIL DE	SCRIP		CONSISTEI RELATIVE	DENSITY
NON-CORED BOREHOLE 30041768 - WYA THAN TO SAME	METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods See Explanatory Notes for					\	No Resistance Very Hard / Refusal WATER dd/mm/yy Level on Date shown Drilling water level water inflow water outflow			W Water San HP Hand Pene SPT Standard F N Result of S	ud Sample untal Sample upple etrometer (kPa) eenetration Test EPT (*=sample taken) ouncing / Refusal ud Sample (50mm dia) ud Sample (75mm dia) ur, peak/remouded(kPa	D		tion Sy		VS S F St VSt H Fb VL L MD D VD	- Very Soft - Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

See Explanatory Notes for details of abbreviations & basis of descriptions.

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH06
PROJECT NUMBER: 30041768

SHEET: 1 OF 1 FINAL DEPTH: 3.7 m

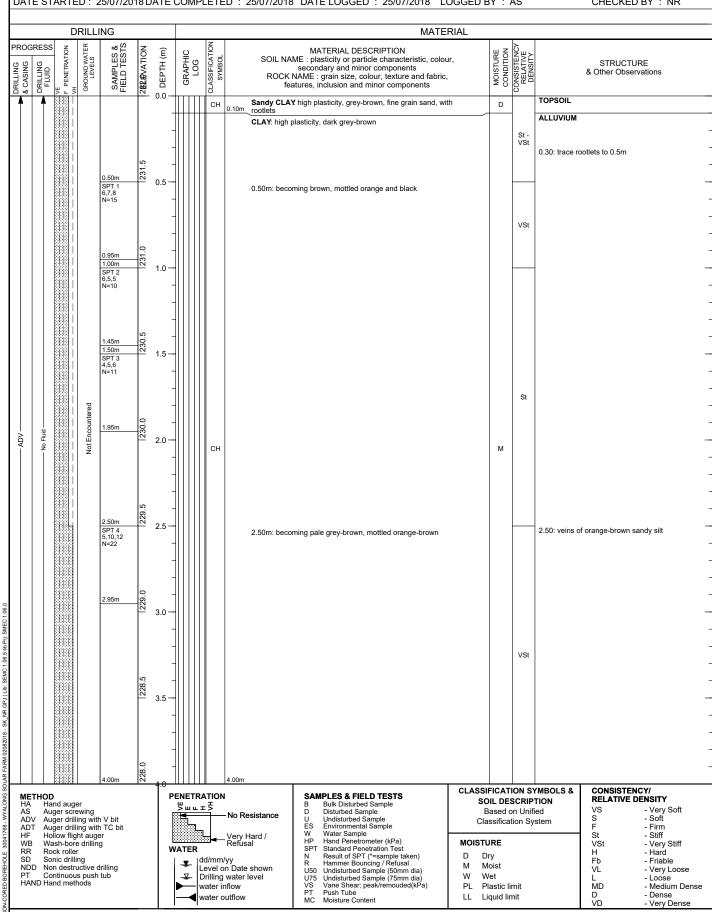
POSITION : E: 529338.0, N: 6258835.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: NR

DATESTA	ux i L	.D . Z	.5/01/20	10 D	AIL	COIVII		_D . 25/07/2010	B DATE LOGGED : 25/07/2	2018 LOGGED	D1	<u> </u>		CHECKED B	1 . 1413		
	_	RILLI					1-	I		MATERIAL			ı				
& CASING SCASING DRILLING PLUID FLUID	F PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2ELEVATION	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe	MATERIAL DESCRIPTION ME: plasticity or particle characte secondary and minor componen NAME: grain size, colour, texture atures, inclusion and minor compo	s and fabric,	MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTURE & Other Observati			
A A				Γ	0.0 -		СН		Y high plasticity, grey-brown, fine gra	n sand, with	D		TOPSOIL				
					-			CLAY: high sand	plasticity, dark grey-brown, trace fine	o medium grain			ALLUVIUM				
	No Fluid		0.50m SPT 1 7,7,7 N=14	230.5	- 0.5 — - -	- - - -				0.50m: trace sub-rounder	e fine to coarse grained sand, trace fii d gravel	e grained		St	0.30: trace rd	potlets to 0.5m	
000000			0.95m 1.00m SPT 2 6,8,8 N=16	230.0	1.0		СН	1.00m: becc	oming brown, mottled orange-brown		M						
ADV—		Encountered	1.45m 1.50m SPT 3 5,6,10 N=16	229.5	- 1.5 — - -			1.50m: becc	oming pale brown, mottled brown and	red-brown		VSt					
A .		Not	1.95m	228.5 229.0	2.0			2.00m: becoming orange and red-brown, with silt			D						
•					2.50m SPT 4 4,14,17/130 HB N=R 2.93m 3.60m SPT 5 8/100mm		2.5 —		СН		high plasticity, red-brown, mottled gr	y and orange	М	н	RESIDUAL	SOIL	
			HB N=R 3.70m	227.0	- - -				ated at 3.70 m usal on inferred granite rock / boulder								
AS Auge ADV Auge ADT Aug HF Hollo WB Was RR Rock SD Soni NDD Non PT Cont HAND Hand	HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods See Explanatory Notes for					Very Hard / Refusal VATER dd/mm/yy Level on Date shown Drilling water level water inflow water outflow			SAMPLES & FIELD TESTS B Bulk Disturbed Sample U Undisturbed Sample U Undisturbed Sample ES Environmental Sample W Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("=sample take R Hammer Bouncing / Refusal U50 Undisturbed Sample (50mm V5 Vane Shear; peak/remouded PT Push Tubb MC Moisture Content	MOIS' Mois' Mois' M M M M M M M PL LL	Based of classification	SCRIP on Unifition Sy	ied	S - F - St - VSt - F - VL - F - VL - MD - D T - D			

PROJECT: Wyalong Solar Farm


HOLE NO: **BH07** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.93 m

POSITION: E: 529594.0, N: 6258646.0 (MGA94 Zone 55) SURFACE ELEVATION: 232.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: NR

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH07 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.93 m

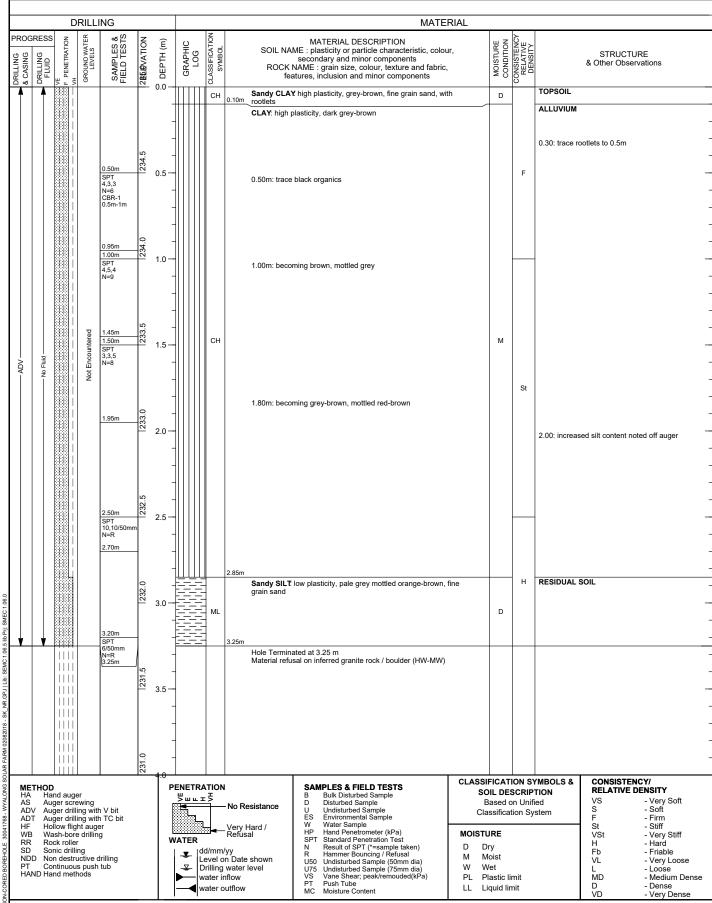
POSITION : E: 529594.0, N: 6258646.0 (MGA94 Zone 55) SURFACE ELEVATION : 232.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: NR

DATE S	STARTE	ED : 2	25/07/20	18 D <i>A</i>	ATE C	OMP	LETE	D : 25/07/2018	B DATE LOGGE	D : 25/07/2018	LOGGED E	3Y : /	AS		CHECKED	BY : NR
	DRILLING MATERIAL															
& CASING BASING BASING BRILLING SELLING SELLIN	SS g				DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe	secondary and min	SCRIPTION ticle characteristic, col or components blour, texture and fabr	lour,	MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Observ	RE vations
D ADV - 8		Not Encountered (SPT 5 10,16,22 N=38 4.45m 5.50m SPT 6 8,24,21,13	226.5 227.0 227.5	4.5 —		СН	CLAY: high	plasticity, dark grey-bro , sub-angular gravel	own, trace red-brown, n	nedium to	М	н	ALLUVIUM		-
METHO HAA H AS ADV A A ADV A A HF H WB WR R SD S NDD N PT C HAND H			5.93m	224.5 225.0 225.5	6.0 —			5.93m Hole Termin Target Deptl	ated at 5.93 m							-
METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods					<u>₹</u>	d/mm/	Very Hard / Refusal (yy n Date shown water level	R Hammer Boul	d Sample mple sample il Sample il Sample meter (kPa) etration Test ("=sample taken) ncing / Refusal sample (50mm dia) sample (75mm dia) seak/remouded(kPa)	MOISTU D D M M W W PL P	Based of states	SCRIP' on Unifition Sy	ed	CONSISTEN RELATIVE D VS S F St VSt H Fb VL L MD D VD	CY/ ENSITY - Very Soft - Soft - Firm - Stiff - Hard - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense	

PROJECT: Wyalong Solar Farm


HOLE NO: BH08 PROJECT NUMBER: 30041768

PROJECT NUMBER: 300417 SHEET: 1 OF 1 FINAL DEPTH: 3.25 m

POSITION : E: 529587.0, N: 6258456.0 (MGA94 Zone 55) SURFACE ELEVATION : 235.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: NR

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO : BH09 PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH : 5.95 m

INCLINATION° / ORIENTATION° : 90° / N/A POSITION : E: 529855.0, N: 6258460.0 (MGA94 Zone 55) SURFACE ELEVATION : 234.00 (AHD)

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS HOLE DIA: 100 mm

DAT	DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: NR													
	DRILLING MATERIAL													
DRILLING & CASING	SAMPLES & SEED/ATION SEED/ATION SEED/ATION SEED/ATION SEED/ATION SEED/ATION SEED/ATION			GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fea	MATERIAL DESCRIPTION AME: plasticity or particle characteristic, secondary and minor components AMME: grain size, colour, texture and fa eatures, inclusion and minor components	particle characteristic, colour, minor components e, colour, texture and fabric,		CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations			
A	A				Ť	0.0		СН		AY high plasticity, grey-brown, fine grain sand	d, with	D		TOPSOIL
				0.50m	233.5				CLAY: high p	plasticity, dark grey-brown, trace fine to medine to medium grain, sub-angular gravel	dium grain		St - VSt	ALLUVIUM 0.30: trace rootlets to 0.5m
				SPT 1 8,9,8 N=17	233.0	- - -							VSt	
				1.00m SPT 2 5,6,6 N=12		1.0 —			1.00m: beco	oming brown, mottled orange-brown				1.00: quartz sand recovery to 1.5m
				1.45m 1.50m SPT 3 5,6,7 N=13	232.5	1.5 —							St	-
——————————————————————————————————————	No Fluid		Not Encountered	1.95m	1232.0	2.0 —		СН				М		-
				2.50m SPT 4 7,9,12 N=21	231.5	2.5 —			2.50m: beco	oming pale brown, mottled red-brown				2.50: bands of red-brown sandy silt to 5.95m
0.00.0				2.95m	1231.0	3.0								_
LID: SEMIC 1.00:3 IID F1). SIMEN					230.5	-							VSt	
ין טיזט. ראי היט - טויטאטעטן אא						3.5 —								-
HAS AD ADD SOCIETION OF THE SOCIETION OF	METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods			230.0		▼	dd/mm.	Very Hard / Refusal /yy n Date shown water level	SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample EW Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT (*=sample taken) R Hammer Bouncing / Refusal U50 Undisturbed Sample (50mm dia) U75 Undisturbed Sample (75mm dia) U75 Vane Shear; peak/remouded(kPa) PT Push Tube MC Moisture Content	MOISTI D D M W W PL P	OIL DES Based of assificat	SCRIP' on Unifition Sy	fied VS - Very Soft	

See Explanatory Notes for details of abbreviations & basis of descriptions.

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH09 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH : 5.95 m

POSITION : E: 529855.0, N: 6258460.0 (MGA94 Zone 55) SURFACE ELEVATION: 234.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

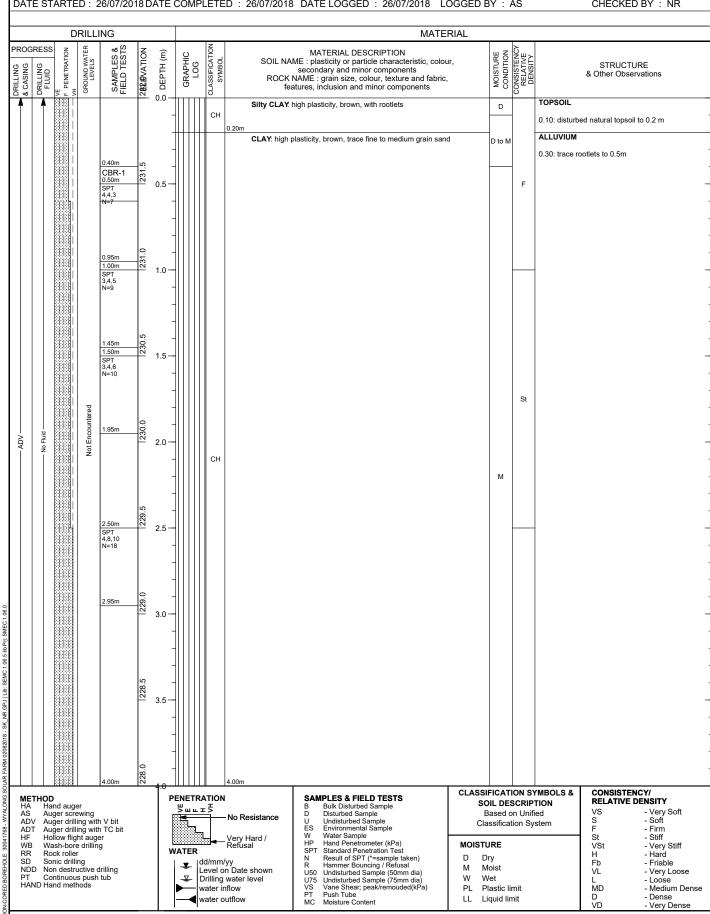
HOLE DIA: 100 mm RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: NR

DATE STAINTED : 25/07/2	UTODATE COMP	PLETED: 25/07/2018 DATE LOGGED: 25/07/2018	LOGGED BY: AS	CHECKED BY: NR							
DRILLING			ERIAL								
DRILLING & CASING BOOD PRILLING STATE FEUID STATE FEUID SAMPLES & FIELD TESTS	2B0.BVATION S DEPTH (m) GRAPHIC LOG	MATERIAL DESCRIPTION SOIL NAME: plasticity or particle characteristic, col secondary and minor components ROCK NAME: grain size, colour, texture and fabri features, inclusion and minor components	MOISTI CONDITI CONDITI PELSTI DENS	STRUCTURE & Other Observations							
AQQ SPT 5 12,16,22 N=38 A.45m A.	4.0	CLAY: high plasticity, dark grey-brown, trace fine to mediu sand, trace fine to medium grain, sub-angular gravel (cont 4.00m: becoming pale grey-brown	m grain ALLUVIUM	-							
5.95m	0.0	5.95m Hole Terminated at 5.95 m Target Depth		-							
	5.25. - - -										
	- 0 7.0 - -										
	- 49 92. 7.5 — -										
			CLASSIFICATION SYMBOLS &	CONSISTENCY/							
METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods See Explanatory Notes for details of abbreviations	▼	SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample Undisturbed Sample ES Environmental Sample ES Environmental Sample ES Environmental Sample Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("-sample taken) Hammer Bouncing / Refusal U50 Undisturbed Sample (50mm dia) U75 Undisturbed Sample (50mm dia) Vane Shear; peak/remouded(kPa) PT Push Tube MC Moisture Content	SOIL DESCRIPTION Based on Unified Classification System MOISTURE D Dry M Moist W Wet PL Plastic limit LL Liquid limit	VS							
See Explanatory Notes for details of abbreviations & basis of descriptions.	See Explanatory Notes for details of abbreviations SMFC ALISTRALIA										

PROJECT: Wyalong Solar Farm : Lightsource BP LOCATION: Wyalong West

CLIENT


HOLE NO: **BH10** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530106.0, N: 6258265.0 (MGA94 Zone 55) SURFACE ELEVATION: 232.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: NR

PROJECT: Wyalong Solar Farm

HOLE NO : BH10 PROJECT NUMBER : 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530106.0, N: 6258265.0 (MGA94 Zone 55) SURFACE ELEVATION : 232.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

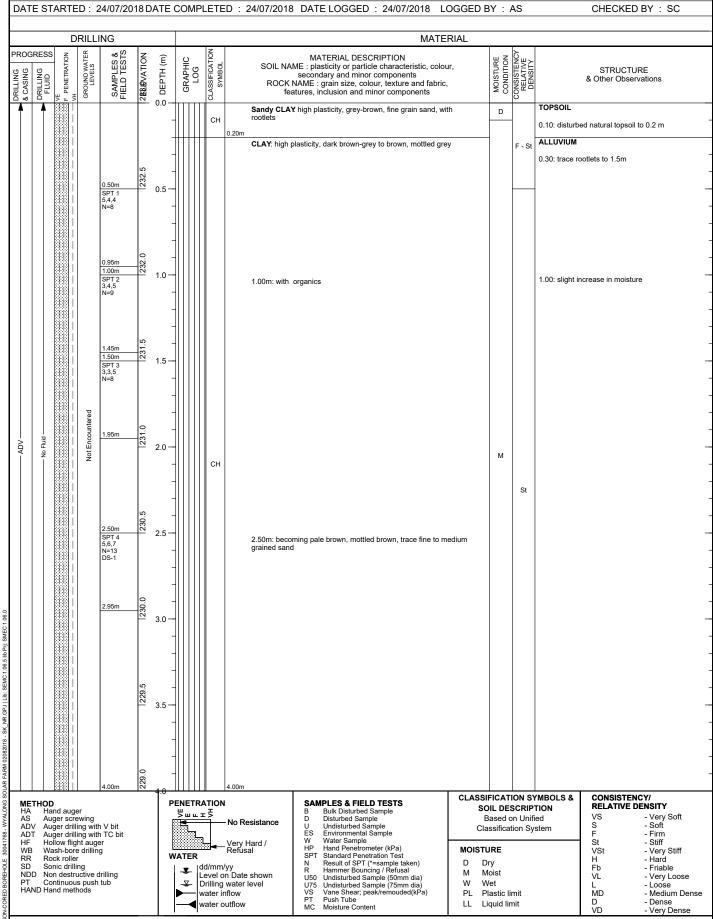
DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: NR

DATE STA	ARTE	D : 2	26/07/20	18 D	ATE (COMP	LETE	D : 26/07/2018	B DATE LOGGED) : 26/07/2018	LOGGED B	Y : /	AS		CHECKEL	DBY: NR
	D	RILLI	NG							MAT	ERIAL					
BRILLING SSASING DRILLING SSASING DRILLING PLUID	ve F PENETRATION VH	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2280VATION	0.5 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	ROCK	MATERIAL DES ME : plasticity or parti secondary and mino NAME : grain size, co atures, inclusion and r	CRIPTION cle characteristic, color components lour, texture and fabr		MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Obse	
ADV –		Not Encountered	SPT 12,19,25 N=44	226.5 227.0 227.5	4.5		СН	CLAY: high coarse grain	plasticity, brown, trace f	ine grain gravel, trace		м	Н	ALLUVIUM	of red-brown san	ndy silt
			5.95m	224.0 224.5 225.0 225.5 226.0	6.5 —			5.95m Hole Termin Target Dept	ated at 5.95 m							
METHOD HA Han AS Aug ADV Aug HF Holl WB Was RR Rocl SD Soni NDD Non PT Con HAND Han	d auge er scre er drill er drill ow flig sh-bore k roller ic drilli destru tinuou d meth	ewing ing with ing with ht auge e drilling ng uctive d s push nods	n TC bit er g drilling tub	1-3	[000000000]	₹ L	dd/mm/ Level o	No Resistance Very Hard / Refusal yy n Date shown water level flow	R Hammer Boun U50 Undisturbed S U75 Undisturbed S	Sample piple Sample Samp	MOISTU D DI M M W W PL PI	ased of ssifications of the state of the sta	SCRIP' on Unifition Sy	ed	CONSISTEI RELATIVE VS S F St VSt H Fb VL L MD D VD	NCY/ DENSITY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT : Lightsource BP LOCATION : Wyalong West

SMEC AUSTRALIA


PROJECT: Wyalong Solar Farm

HOLE NO: BH11
PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530379.0, N: 6258448.0 (MGA94 Zone 55) SURFACE ELEVATION : 233.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

See Explanatory Notes for details of abbreviations & basis of descriptions.

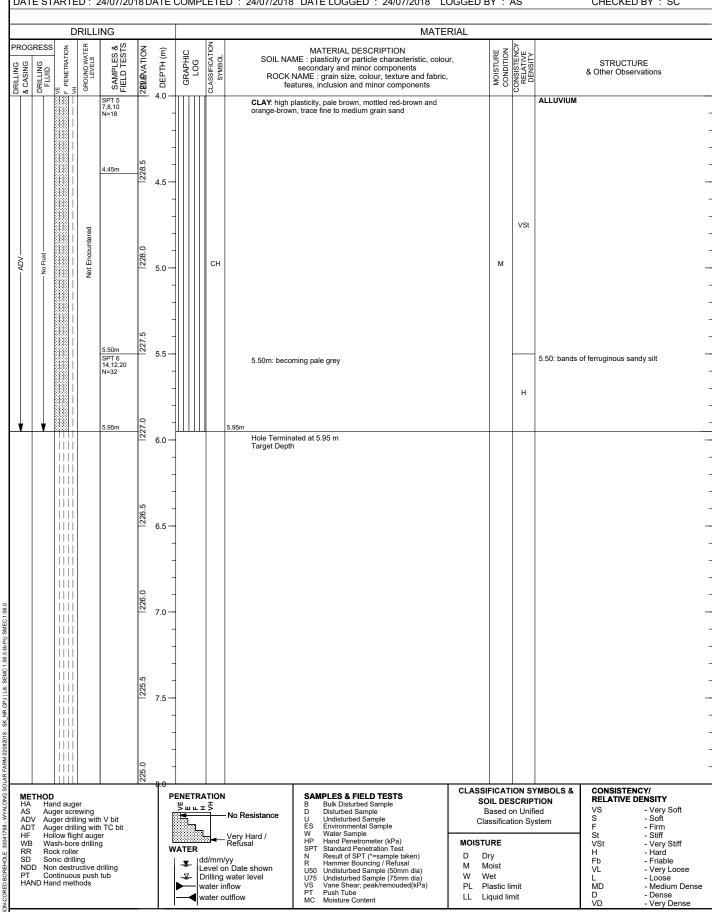
CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm


HOLE NO: **BH11** PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH : 5.95 m

POSITION: E: 530379.0, N: 6258448.0 (MGA94 Zone 55) SURFACE ELEVATION: 233.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

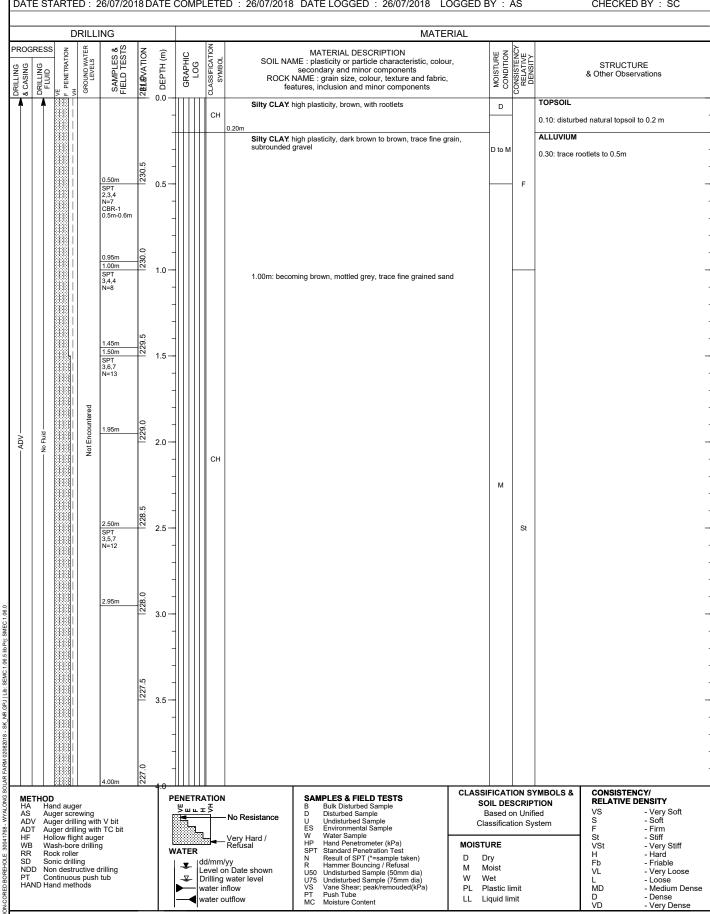
CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm


HOLE NO: **BH12** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530634.0, N: 6258645.0 (MGA94 Zone 55) SURFACE ELEVATION: 231.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

HOLE NO: BH12 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530634.0, N: 6258645.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

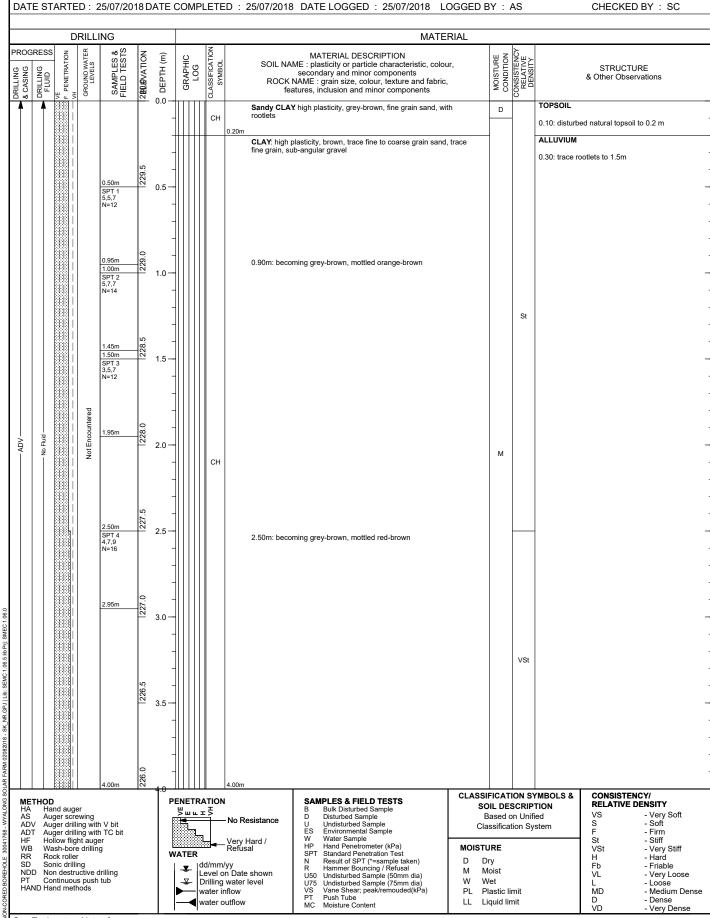
DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: SC

DATE STA	ARTI	ED : 2	26/07/20	18 D	ATE (COMP	LETE	D: 26/07/2018	B DATE LOGGED :	26/07/2018 L	OGGED E	3Y : /	AS		CHECKED	BY : SC
		DRILL	ING							MATE	ERIAL					
& CASING AD DEILLING BD DEILLING BD SELUID SELUID	VE F PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2ELBVATION	5 DEРТН (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe:	MATERIAL DESCR ME : plasticity or particle secondary and minor c NAME : grain size, colou atures, inclusion and min	characteristic, colo omponents r, texture and fabric		MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Obser	
ADV – No Fluid		Not Encountered	SPT 78.9 N=17 4.45m 5.50m SPT 111,17,17	225.5 226.0 226.5	4.5		СН	Sity CLAY, subrounded	high plasticity, dark brown gravel (continued)	to brown, trace fine	grain,	М	VSt	ALLUVIUM	of sandy silt to 5.5	95m
V V			N=34 5.95m	225.0	- - -			5.95m					н			
				223.5 224.0 224.5 2	6.5			Hole Termin Target Deptl	ated at 5.95 m							
METHOD HA Han AS Aug ADV Aug ADT Aug HF Holl WB Was RR Roc SD Son NDD Non	d auger screer drill er drill er drill ow fligsh-bork k rolle ic drill destr	rewing Iling wit Iling wit ght aug re drillin er ling ructive us push thods	h TC bit er ig drilling n tub	223.0		▼ L	dd/mm.	Very Hard / Refusal (yy n Date shown water level	SAMPLES & FIELD B Bulk Disturbed Sample U Undisturbed Sample Environmental Sample HP Hand Penetromet SPT Standard Penetra N Result of SPT (*=: R Hammer Bouncine U50 Undisturbed Samp U75 Undisturbed Samp U75 Undisturbed Samp U75 Vane Shear; peak PT Push Tube MC Moisture Content	mple ple mple er (kPa) tion Test sample taken) g / Refusal ble (50mm dia) ble (75mm dia)	MOISTL D DO M M W W PL PI	ased of ssifications	SCRIP' on Unifition Sys	ed	CONSISTEN RELATIVE D VS S F St VSt H F b VL L MD D VD	CCY/ DENSITY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT : Lightsource BP LOCATION : Wyalong West

SMEC AUSTRALIA


PROJECT: Wyalong Solar Farm

HOLE NO: **BH13** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530622.0, N: 6258828.0 (MGA94 Zone 55) SURFACE ELEVATION: 230.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH13
PROJECT NUMBER: 30041768

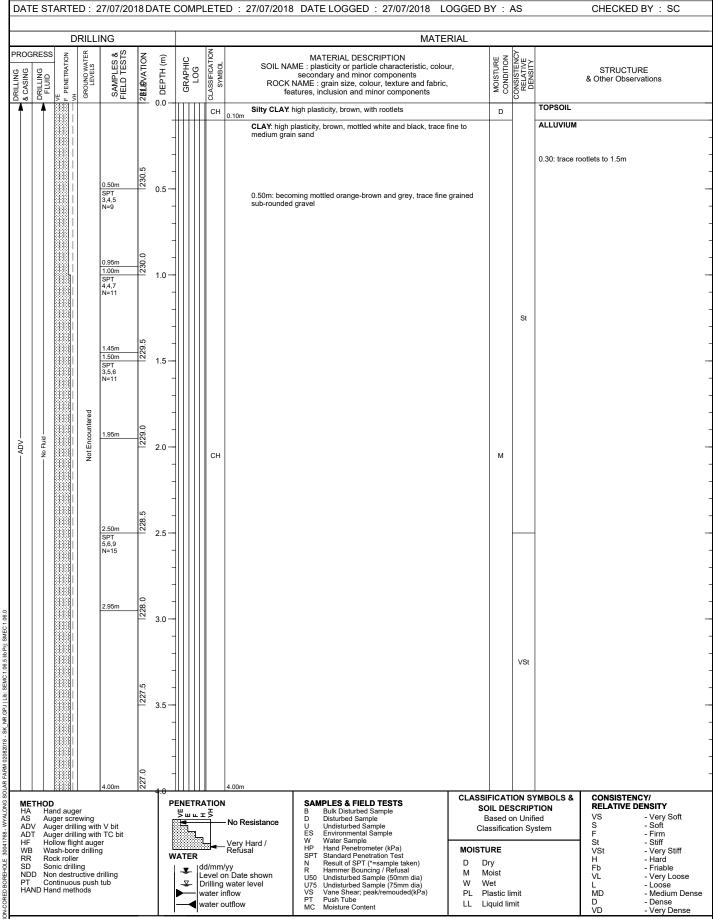
SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530622.0, N: 6258828.0 (MGA94 Zone 55) SURFACE ELEVATION : 230.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: SC

								ED : 25/07/2018 DATE LOGGED : 25/07/2018 LC	OGGED B				CHECKED BY : SC
		RILLI						MATER					
BECASING CASING DELLING PLUID FLUID	VE F PENETRATION VH	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	226.0VATION	0. DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION SOIL NAME: plasticity or particle characteristic, colous secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components	r,	MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTURE & Other Observations
– ADV –		Not Encountered	SPT 5 8,9.13 N=22 4.45m 5.50m SPT 6 9,13,17	224.5 225.0 225.5	4.5 —		СН	CLAY: high plasticity, brown, with fine grain sand, trace fine g sub-angular gravel 5.00m: becoming grey		М	VSt	ALLUVIUM	
			N=30 5.95m	223.5 224.0	6.0 —			5.95m Hole Terminated at 5.95 m Target Depth			Н		
				223.0 25	6.5 — - - 7.0 — -								
METHOD HA Han AS Aug ADV Aug ADT Aug HF Holl WB Was RR Rod SD Soni NDD Non PT Con HAND Han	d aug er screr drill down flig sh-bor k rolle ic drill destr	er ewing ling with ling with ght auge e drillin- er ling uctive o	n V bit n TC bit er g	222.0 222.5		-	dd/mm.	No Resistance B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample ES Environmental Sample W Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test	SOI Ba	RE pist	ON SY SCRIP on Unifi	ed	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard Fb - Friable VL - Very Loose L - Loose


PROJECT: Wyalong Solar Farm

HOLE NO: BH14
PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530630.0, N: 6259004.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

HOLE NO: BH14
PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

SMEC

POSITION : E: 530630.0, N: 6259004.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

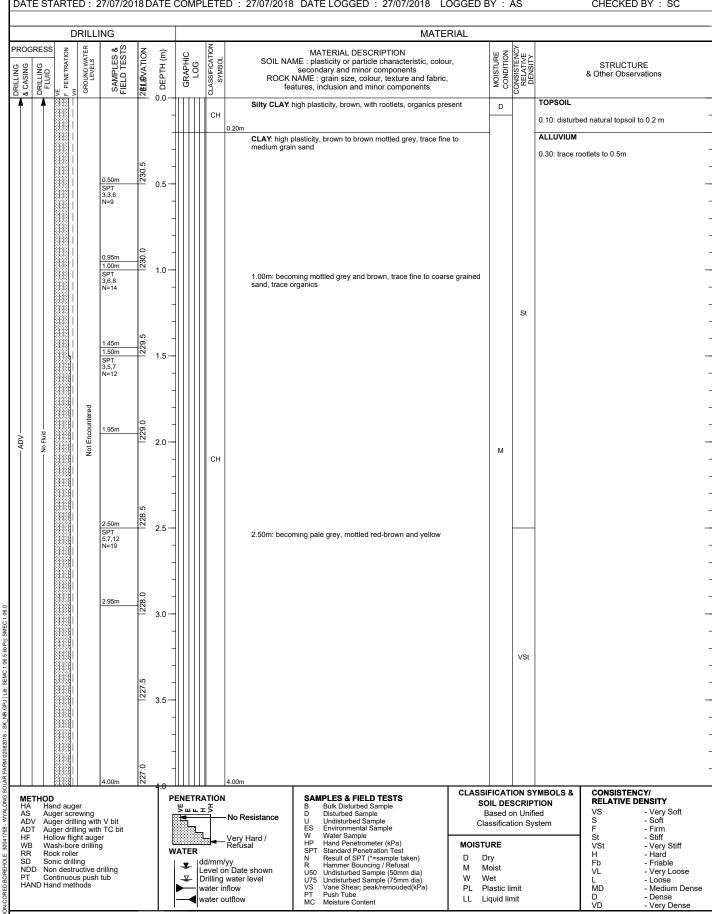
RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS CHECKED BY: SC

DATESTA	AKIE	ΞD : 2	27/07/20	18 D	AIE	COMP	LEIL	D : 27/07/2018 DATE LOGGED : 27/07/2018	LOGGED E	O T	43		CHECKED BY : SC
		RILLI						MAT	ERIAL		1		
DRILLING SS CASING DRILLING FLUID SS	VE F PENETRATION VH	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2ELEVATION	0. DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION SOIL NAME: plasticity or particle characteristic, col secondary and minor components ROCK NAME: grain size, colour, texture and fabri features, inclusion and minor components		MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTURE & Other Observations
- ADV		Not Encountered	SPT 9,15,19 N=34 4.45m 4.45m	225.5 226.0 226.5	4.0 —		СН	CLAY: high plasticity, mottled red-brown, trace fine to med sand, trace fine grain, sub-rounded gravel 4.00m: becoming mottled red-brown	fium grain	М	н	ALLUVIUM	of sandy silt to 5.95m
V			12,17,14 N=31	1225.0	6.0 —			5.95m Hole Terminated at 5.95 m Target Depth					
				224.0 224.5	6.5 — - - - 7.0 —								
METHOD HA Han AS Aug ADV Aug ADV AUG WB Was RR Rooc SD Son NDD Non PT Con HAND Han	d augger drill	er ewing ling with	n V bit	223.0 223.5	7.5 — P	ENETR		SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample U Undisturbed Sample ES Environmental Sample	SC	IL DE	ION S' SCRIP on Unif	ied	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm
HF Holl WB Was RR Roc SD Son NDD Non PT Con HAND Han	er drilling with V bit er drilling with TC bit ow flight auger sh-bore drilling k roller ic drilling destructive drilling tinuous push tub d methods WATER WATER dd/mm/y Level on Drilling water inf water ou				w	₹	Level o Drilling water ir	Very Hard / Refusal W Water Sample Refusal SPT Hand Penetrometer (kPa) SPT Standard Penetration Test I/Y N Result of SPT ("=sample taken) I Date shown R Hammer Bouncing / Refusal U50 Undisturbed Sample (50mm dia) VS Vane Shear; peak/remouded(kPa)	w w	ry oist 'et astic li			St

CLIENT : Lightsource BP LOCATION : Wyalong West

PROJECT: Wyalong Solar Farm


HOLE NO: **BH15** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530884.0, N: 6259067.0 (MGA94 Zone 55) SURFACE ELEVATION: 231.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm

HOLE NO : BH15 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH : 5.95 m

INCLINATION° / ORIENTATION° : 90° / N/A POSITION : E: 530884.0, N: 6259067.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD)

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS HOLE DIA: 100 mm

DATE STA	ARTED	: 27/07	/2018 🗅	ATE	COMPLE	TED : 27/07/201	18 DATE LOGGED : 27	'/07/2018 LOG	GGED BY	Y : A	AS		CHECKED E	BY : SC
	DRI	ILLING						MATERIA	AL					
A CASING SE SELUID SELU	F PENETRATION VH	SAMPLES &	FIELD TESTS	0. DEPTH (m)	GRAPHIC LOG CLASSIFICATION	ROCI	MATERIAL DESCRIPT IAME: plasticity or particle cha secondary and minor comp K NAME: grain size, colour, te features, inclusion and minor c	aracteristic, colour, conents exture and fabric,		MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTUR & Other Observa	
- ADV — — ADV		SPT 10.13. N=30 4.45m 4.45m 5.50m SPT 10.18. N=39	17	4.0 —			h plasticity, mottled red-brown ar ain sand	d pale grey, trace fir		М	VSt	ALLUVIUM		
			223.0 223.5 224.0 224.5 22	6.0 —			inated at 5.95 m							-
METHOD HA Hand AS Auge ADV Auge ADT Auge HF Holic WB Wasi RR Rock SD Sonin NDD Non PT Cont HAND Hand	HOD Hand auger Auger screwing Auger drilling with V bit Auger drilling with TC bit Hollow flight auger Wash-bore drilling Rock roller Sonic drilling WATER WATER w dd/mm/yy					No Resistance Very Hard / Refusal mm/yy el on Date shown ling water level er inflow	SAMPLES & FIELD TES B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample W Water Sample HP Hand Penetrometer (k SPT Standard Penetration N Result of SPT ("sam R Hammer Bouncing / R U50 Undisturbed Sample (U75 Undisturbed Sample (U75 Undisturbed Sample (VS Vane Shear, peak/rem PT Push Tube MC Moisture Content	Pa) Test ole taken) efusal Somm dia)	Ba Clas MOISTUR D Dry M Mo W We PL Pla	L DES ased or sificati RE /	SCRIP' n Unifi ion Sy	ed	S FSt VSt H Fb VL L MD D	Y/I NSITY - Very Soft - Soft - Firm - Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

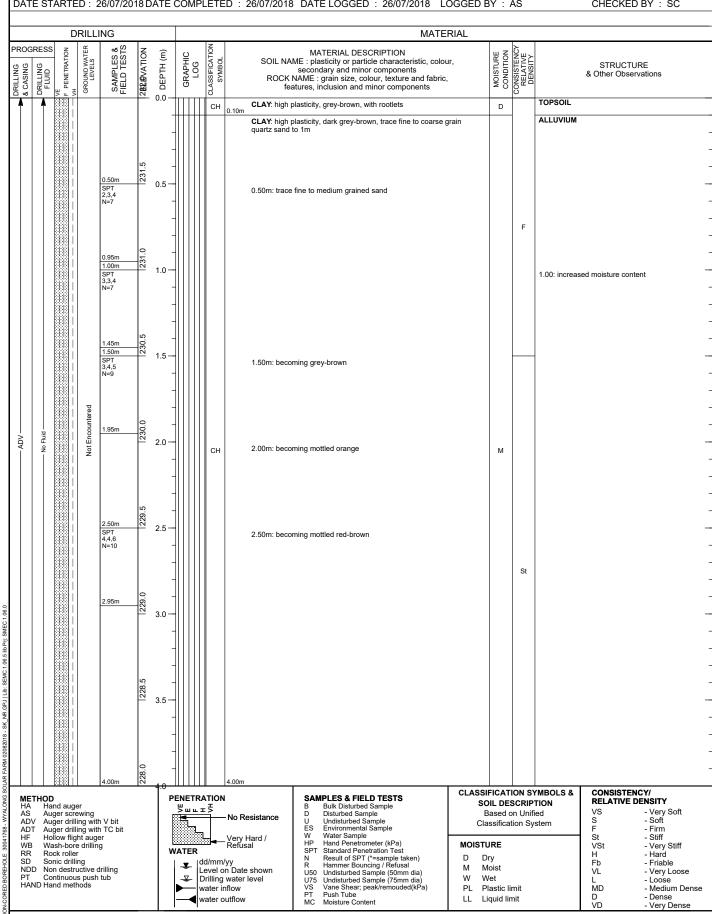
See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT : Lightsource BP LOCATION : Wyalong West

SMEC AUSTRALIA

SMEC SMEC

PROJECT: Wyalong Solar Farm


HOLE NO: **BH16** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530626.0, N: 6259201.0 (MGA94 Zone 55) SURFACE ELEVATION: 232.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: SC

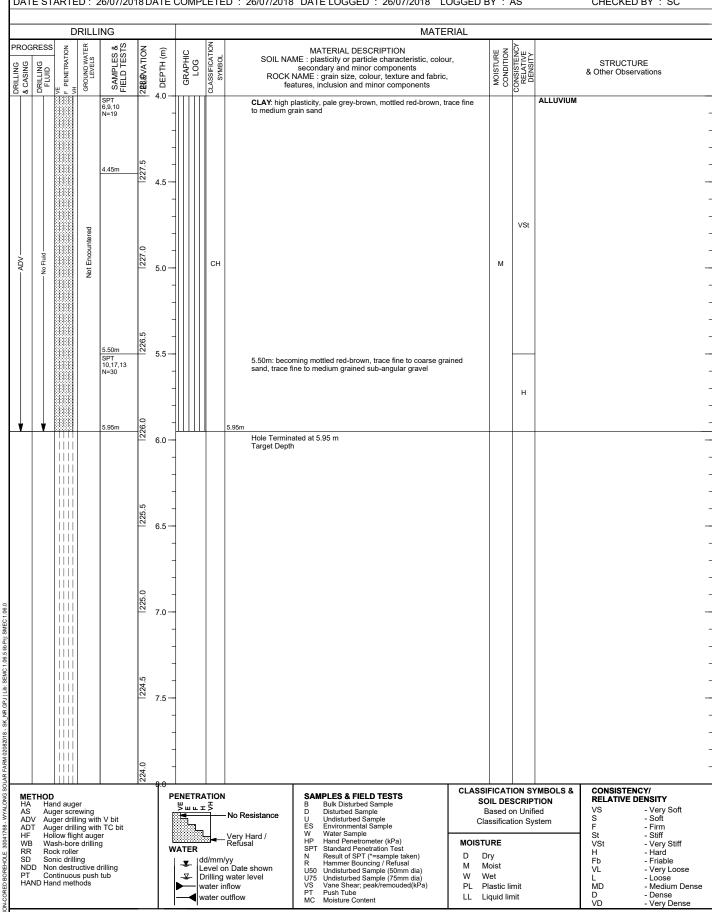
See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm


HOLE NO: **BH16** PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH : 5.95 m

POSITION: E: 530626.0, N: 6259201.0 (MGA94 Zone 55) SURFACE ELEVATION: 232.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

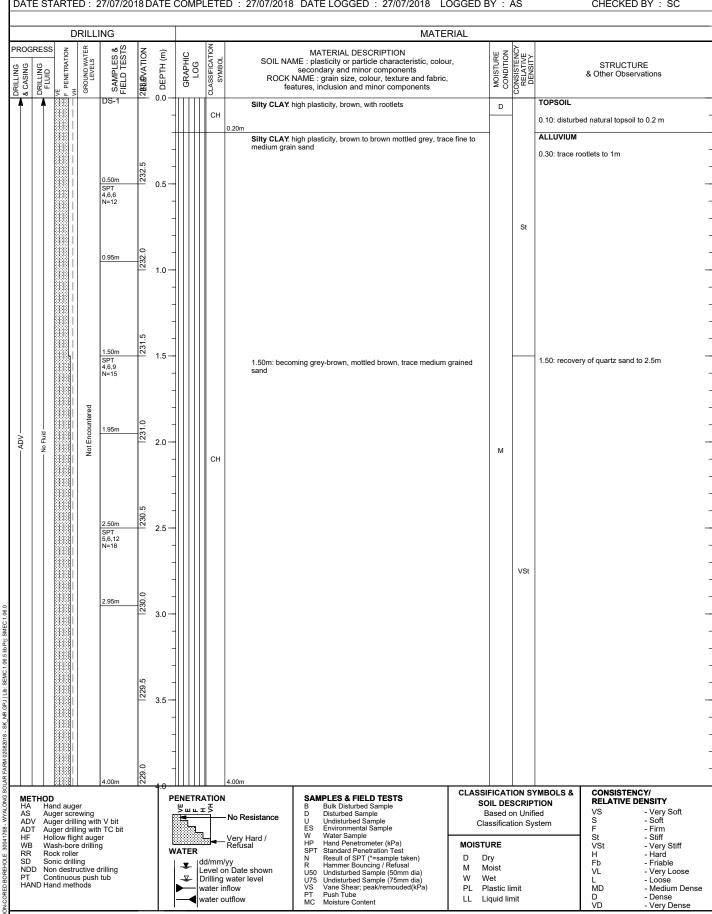
CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm


HOLE NO: **BH17** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530382.0, N: 6259394.0 (MGA94 Zone 55) SURFACE ELEVATION: 233.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm

HOLE NO: BH17
PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

SMEC

POSITION : E: 530382.0, N: 6259394.0 (MGA94 Zone 55) SURFACE ELEVATION : 233.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

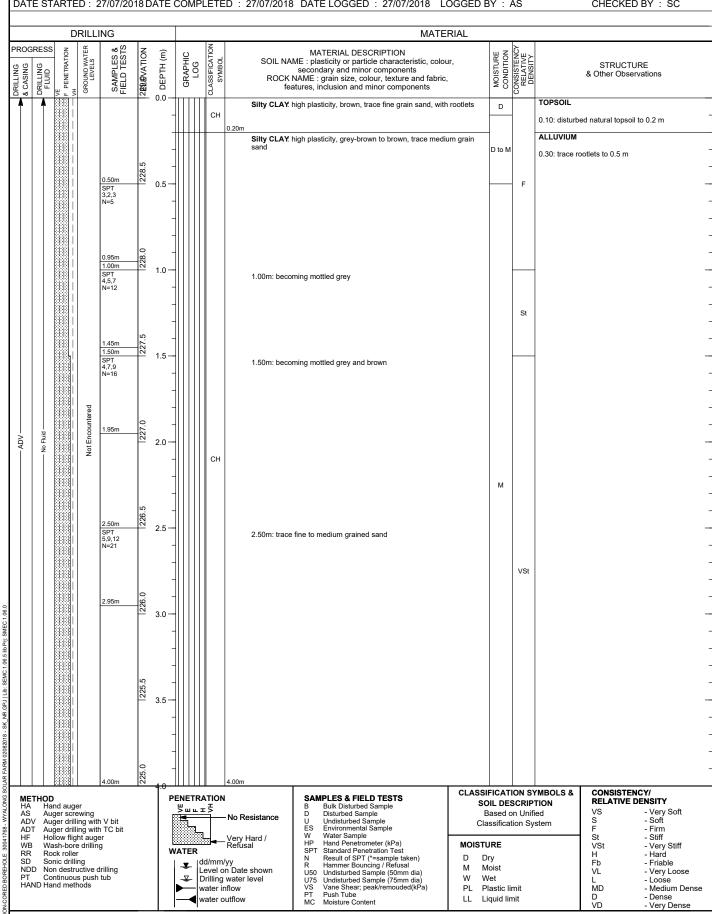
RIG TYPE : HYNDAGH MOUNTING : 4WD CONTRACTOR : APEX DRILLING HOLE DIA : 100 mm

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS CHECKED BY: SC

DAI		IAIN		J . Z	.1101120	10 L	AIL	COIVII	LLII	_D . ZI/01/2010	8 DATE LOGGED	. 21/01/2010 L	OGGED B	' 1 . /	10		CHECKED	ы . оо
			_	RILLI								MATE						
BRILLING AS CASING	_	— ≥	ΛΗ	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	229.0VATION	0. DEPTH (m)	GRAPHIC	CLASSIFICATION	SOIL NA ROCK fe	MATERIAL DESC AME : plasticity or particl secondary and minor NAME : grain size, colo eatures, inclusion and mi	le characteristic, color components our, texture and fabric	ur, ;,	MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Obser	
- ADV	- No Fluid				SPT 11,14,19 N=33 4.45m	228.0 228.5	4.0 —		СН		high plasticity, brown mo	ttled yellow, trace fine		М	н	ALLUVIUM		
					5.50m SPT 10,14,20 N=34 5.95m	227.0	5.5 — - -			5.5m: becon	ming mottled red-brown, to	race fine grained sand				5.50: bands ϵ	of sandy silt to 5.9	1 5m
						226.5 22	6.0 —				nated at 5.95 m th							
						225.5 226.0	7.0 —											
MBHAASADAAD HF WENT HAA	ETHO A A A A A A A A A A A A A A A A A A A	D land auger suger dollow took rook rook onic dollow fonic dollow family and mand mand mand mand mand mand mand	uger crev Irillir Irillir Irillir structus eetho	wing g with g with t auge drilling g g ctive d push	V bit TC bit G G rilling tub	225.0		→	dd/mm Level of Drilling water	- No Resistance Very Hard / Refusal /yy on Date shown water level	SAMPLES & FIELL B Bulk Disturbed Samp U Undisturbed Samp U Undisturbed Samp ES Environmental S W Water Sample HP Hand Penetrom SPT Standard Penetrom SPT Standard Penetrom Indisturbed Samp Indis	Sample le mple Sample ster (kPa) ration Test =sample taken) ng / Refusal mple (50mm dia) mple (75mm dia) ak/remouded(kPa)	MOISTU D DI M M W W	ased of ssificar sificar sific	SCRIP' on Unifition Sy	ed	CONSISTEN RELATIVE D VS S F St VSt H Fb VL L MD D VD	

CLIENT : Lightsource BP LOCATION : Wyalong West

PROJECT: Wyalong Solar Farm


HOLE NO: **BH18** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530109.0, N: 6259203.0 (MGA94 Zone 55) SURFACE ELEVATION: 229.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO : BH18 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH : 5.95 m

INCLINATION° / ORIENTATION° : 90° / N/A POSITION : E: 530109.0, N: 6259203.0 (MGA94 Zone 55) SURFACE ELEVATION : 229.00 (AHD)

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS HOLE DIA: 100 mm

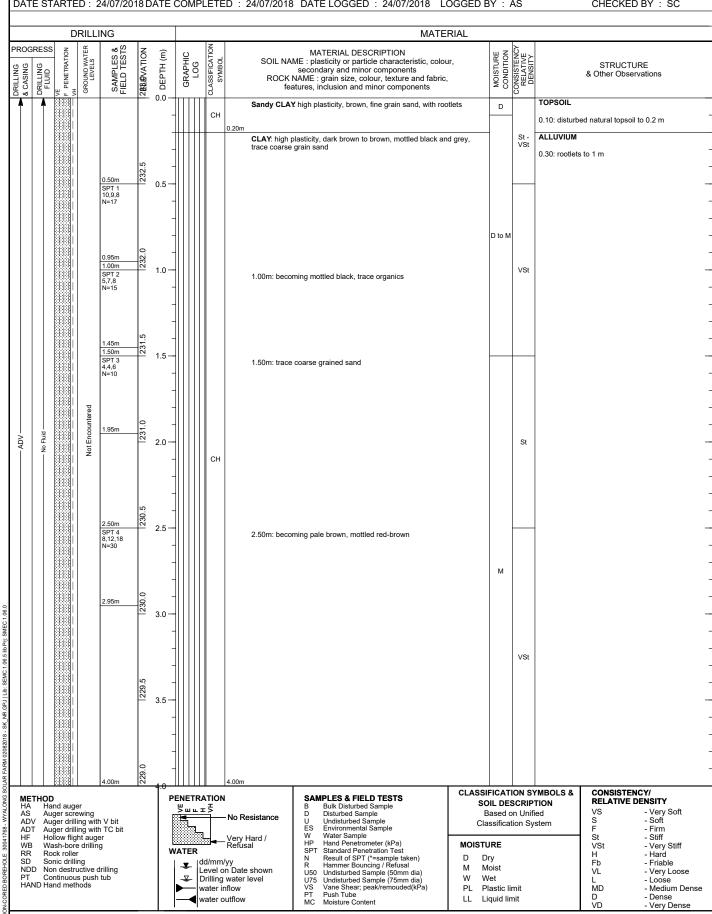
DATE STA	RTE	D: 2	7/07/201	18 D.	ATE (COMP	LETE	D : 27/07/2018 DATE LOGGED : 27/07/2018 LOGGED	BY:	AS		CHECKED BY : SC
	DF	RILLI	NG					MATERIAL				
DRILLING AS CASING DO DRILLING S S FLUID S S	F PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	22529VATION	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION SOIL NAME : plasticity or particle characteristic, colour, secondary and minor components ROCK NAME : grain size, colour, texture and fabric, features, inclusion and minor components	MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTURE Other Observations
ADV — ADV		Not Encountered	SPT 9,14,17 N=31 4.45m	24.5	4.0		СН	Silty CLAY high plasticity, pale grey, mottled orange-brown, trace fine to medium grain sand 5.50m: becoming mottled red-brown and grey, trace fine to coarse grained sand, trace fine to medium grained sub-angular gravel	м	Н	ALLUVIUM	ilty sand to 5.95m
			5.99m	221.5 222.0 222.5	6.5 —			Hole Terminated at 5.95 m Target Depth				-
METHOD HA Hand AS Auge ADV Auge ADT Auge HF Hollo WB Wash RR Rock SD Sonio NDD Non	d auge er scre er drillin er drillin ow fligh h-bore k roller c drillin destru tinuous d meth	wing ng with ng with nt auge drilling og ctive d s push ods	TC bit r J rilling tub	22.	100000000000000000000000000000000000000	₹	dd/mm. Level c	SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample E SENT Undisturbed Sample U Undisturbed Sample (Somm dia) U Undisturbed Sample U Undisturbed Sample (Somm dia) U U Undisturbed Sample (Somm dia) U U Undisturbed Sample (Somm dia) U U U U U U U U U U U U U U U U U U	OIL DI Based assific	escrip on Unit ation Sy	TION fied sstem	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard Fb - Friable VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

See Explanatory Notes for details of abbreviations & basis of descriptions.

SMEC AUSTRALIA

SMEC SMEC

PROJECT: Wyalong Solar Farm


HOLE NO: **BH19** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 529856.0, N: 6259010.0 (MGA94 Zone 55) SURFACE ELEVATION: 233.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO : BH19
PROJECT NUMBER : 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 529856.0, N: 6259010.0 (MGA94 Zone 55) SURFACE ELEVATION : 233.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

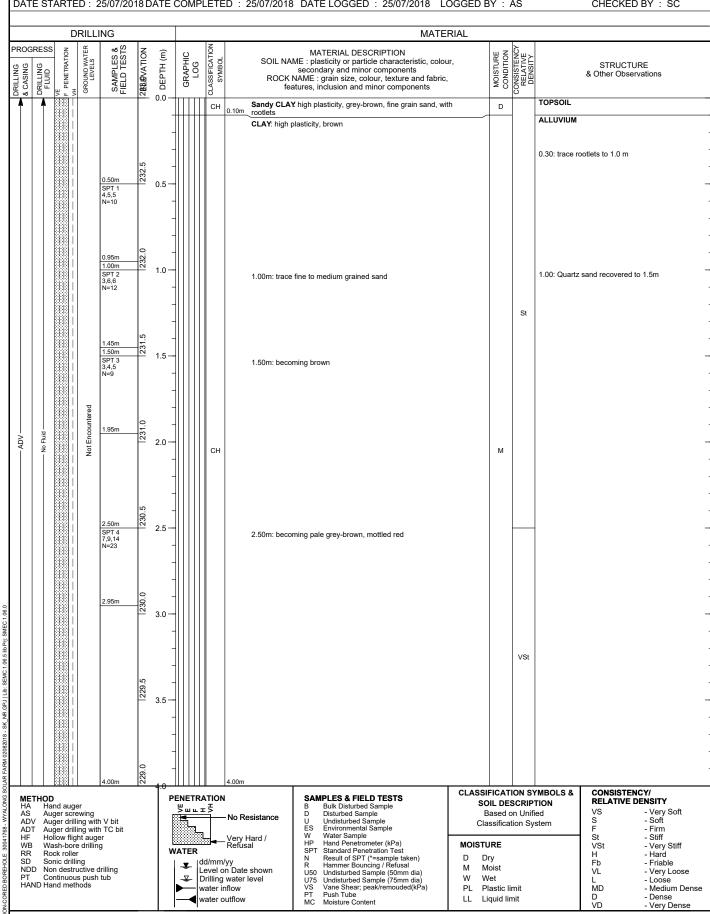
DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: SC

DATE	STAI	RTE	ED : 2	24/07/20	18 D.	ATE (COMP	LETE	D : 24/07/2018	8 DATE LOGGED : 24/0	7/2018 L	OGGED B	SY : /	AS		CHECKE	DBY : SC	
			RILLI	NC							MATE	DIAI						
PROGRE	ESS				7	_		z		MATERIA				≿				
	FLUID	F PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2290VATION	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe	MATERIAL DESCRIPTIOI ME: plasticity or particle charact secondary and minor compon NAME: grain size, colour, textu- atures, inclusion and minor com	cteristic, colou ents re and fabric	ur,	MOISTURE	CONSISTENC RELATIVE DENSITY		STRUCT & Other Obse	JRE rvations	
	No Fluid		Not Encountered 0	5.50m SPT 6 14,18,24 N=42 4.45m	227.5 228.0 228.5	4.5 —		СН	CLAY: high grain sand	plasticity, pale grey, mottled yellow			М	Н	ALLUVIUM	sed moisture co	ntent	-
METH HAAS ADV HF WB RR SD NDD PT HAND				5.95m	225.5	6.0 — 6.5 — 7.0 — 7.5 —			5.95m Hole Termin Target Dept	nated at 5.95 m								-
METH HA AS ADV ADT HF WB RR SD NDD PT HAND	THOD Hand auger Auger screwing / Auger drilling with V bit T Auger drilling with TC bit Hollow flight auger Wash-bore drilling Rock roller Sonic drilling D Non destructive drilling Continuous push tub ND Hand methods Turknanana Natao for					dd/mm. Level o Drilling	Very Hard / Refusal /yy n Date shown water level	SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample W Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Tes N Result of SPT ("sample" (For US) Holisturbed Sample (50n U75 Undisturbed Sample (75n VS Vane Shear, peak/remour PT Push Tube MC Moisture Content	t laken) sal ım dia)	MOISTU D DI M M W W PL PI	ased of ssifications	SCRIP' on Unifition Sy	ed	CONSISTE RELATIVE VS S F St VSt H Fb VL L MD D VD	NCY/ DENSITY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium De - Dense - Very Dense	nse		

See Explanatory Notes for details of abbreviations & basis of descriptions.

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm


HOLE NO: **BH20** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 529857.0, N: 6258832.0 (MGA94 Zone 55) SURFACE ELEVATION: 233.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH20 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

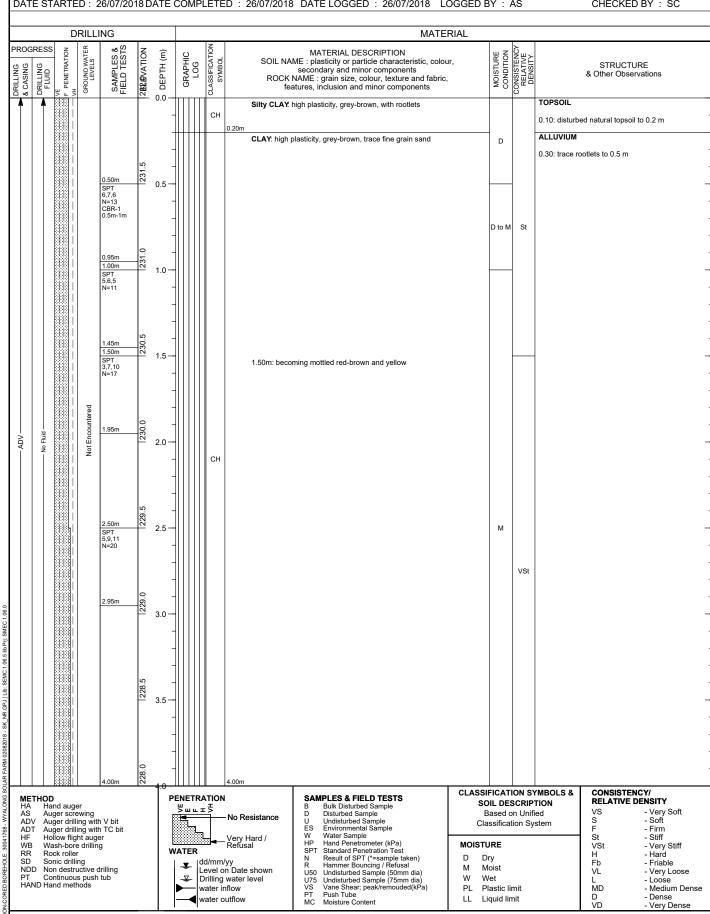
POSITION : E: 529857.0, N: 6258832.0 (MGA94 Zone 55) SURFACE ELEVATION : 233.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: SC

DAT	ES	TART	ED:	25/07/20	18 D	ATE (COMP	LETE	D : 25/07/2018	8 DATE LOGGED : 25/07/2	018 LOG	GED BY	: A	S		CHECKED	BY : SC
			DRILL	.ING							MATERIA	AL.					
DRILLING & CASING	_	S NO	OUND WATER LEVELS	SAMPLES & FIELD TESTS	2299VATION	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe	MATERIAL DESCRIPTION AME : plasticity or particle character secondary and minor componen NAME : grain size, colour, texture satures, inclusion and minor compo	istic, colour, s and fabric,		CONDITION	CONSISTENCY RELATIVE DENSITY		STRUCTUR & Other Observa	
D ADV 8	No Fluid		Not Encountered	5.50m 5.50m 5.50m 5.50m 5.50m	227.5 228.0 228.5	4.5 —		СН	CLAY: high coarse grain	plasticity, pale grey, mottled yellow an sand, trace medium grain, sub-angu	id red, trace fin ar gravel	ne to	М	Н	ALLUVIUM	sand recovered to	- 5.95m
ME HAAS ADD HE WERR SDD ND PT HA				5.95m	225.5 226.0 226.5	6.5 —			5.95m Hole Termin Target Dept	nated at 5.95 m							-
ME HA AS AD AD HF WE RR SD ND PT HA	THOD Hand auger Auger screwing V auger drilling with V bit T Auger drilling with TC bit Hollow flight auger Wash-bore drilling Rock roller Sonic drilling D Non destructive drilling Continuous push tub ND Hand methods Texplanation Notes for				Very Hard / Refusal /yy n Date shown water level	SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample W Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("Sample take R Hammer Bouncing / Refusal U50 Undisturbed Sample (50mm VS Vane Shear; peak/remouded PT Push Tube MC Moisture Content	n) lia) lia) kPa)	Bas Classi MOISTUR D Dry M Mois W Wet PL Plas	DES sed or ificati E	CRIP n Unifi on Sy	ed	CONSISTENC RELATIVE DE VS S F St VSt H Fb VL L MD D VD	PY/ PNSITY - Very Soft - Soft - Firm - Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense				

PROJECT: Wyalong Solar Farm


HOLE NO: **BH21** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 529854.0, N: 6258646.0 (MGA94 Zone 55) SURFACE ELEVATION: 232.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO : BH21 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH : 5.95 m

INCLINATION° / ORIENTATION° : 90° / N/A POSITION : E: 529854.0, N: 6258646.0 (MGA94 Zone 55) SURFACE ELEVATION : 232.00 (AHD)

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING

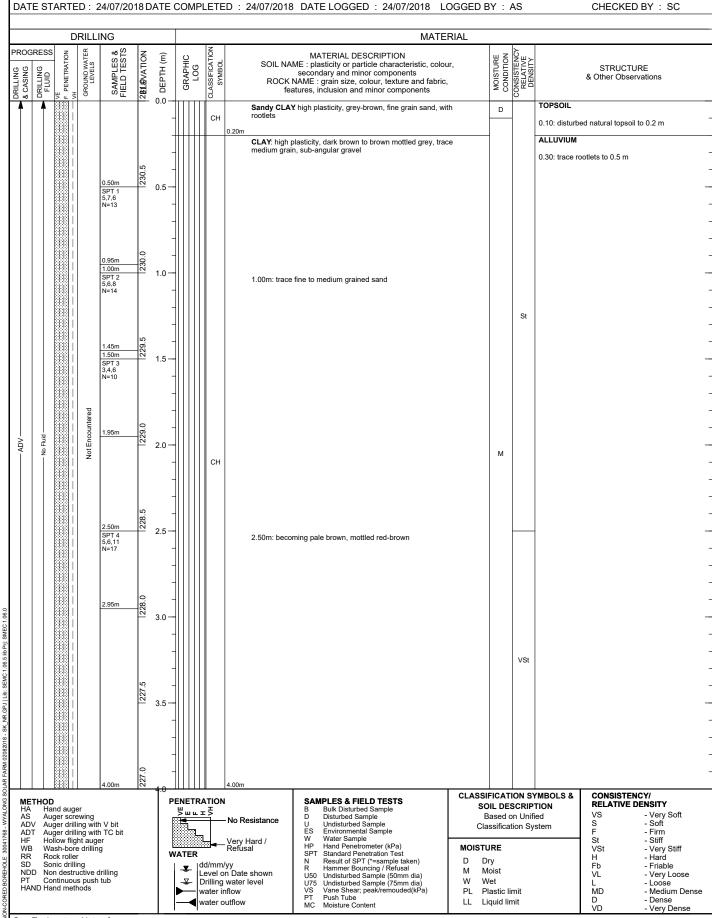
DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS HOLE DIA: 100 mm

DATE STA	ARTE): 2	6/07/201	8 D.	ATE (COMP	LETE	D : 26/07/2018 DATE LOGGED : 26/07/2018 LOGGED BY : AS	CHECKED BY : SC
	DR	RILLIN	NG					MATERIAL	
& CASING SECULING PELLING PELLING PELLING SECULING PELLING SECULING SECURING SECULING SECULING SECULING SECULING SECULING SECULING SECURING SECULING SECULING SECULING SECULING SECULING SECULING SECULING SECULING SECURING SECURIN	VE F PENETRATION VH	GROUND WATER LEVELS		2E8.EVATION	0.5 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION SOIL NAME : plasticity or particle characteristic, colour, secondary and minor components ROCK NAME : grain size, colour, texture and fabric, features, inclusion and minor components	
- ADV		Not Encountered	SPT 9,11,16 N=27 4.45m 6.50m SPT N=27	226.5 227.0 227.5	4.5 —		СН	CLAY: high plasticity, mottled red-brown, trace fine grain sand, trace fine grain, sub-rounded gravel M VSt 5.50m: becoming pale grey mottled red and yellow	ALLUVIUM
			5.95m	224.5 225.0 225.5	6.5 —			Hole Terminated at 5.95 m Target Depth	
METHOD HA Hann AS Augr ADV Augr HF Holici WB Was RR Root SD Soni NDD Non PT Coni HAND Hann		ving g with g with t auger drilling g stive dr push t	TC bit illing ub	IM	000000000	▼ L	Id/mm.	Date shown	TION RELATIVE DENSITY VS - Very Soft

See Explanatory Notes for details of abbreviations & basis of descriptions.

SMEC AUSTRALIA

SMEC SMEC


PROJECT: Wyalong Solar Farm

HOLE NO: **BH22** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530108.0, N: 6258641.0 (MGA94 Zone 55) SURFACE ELEVATION: 231.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH22 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530108.0, N: 6258641.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

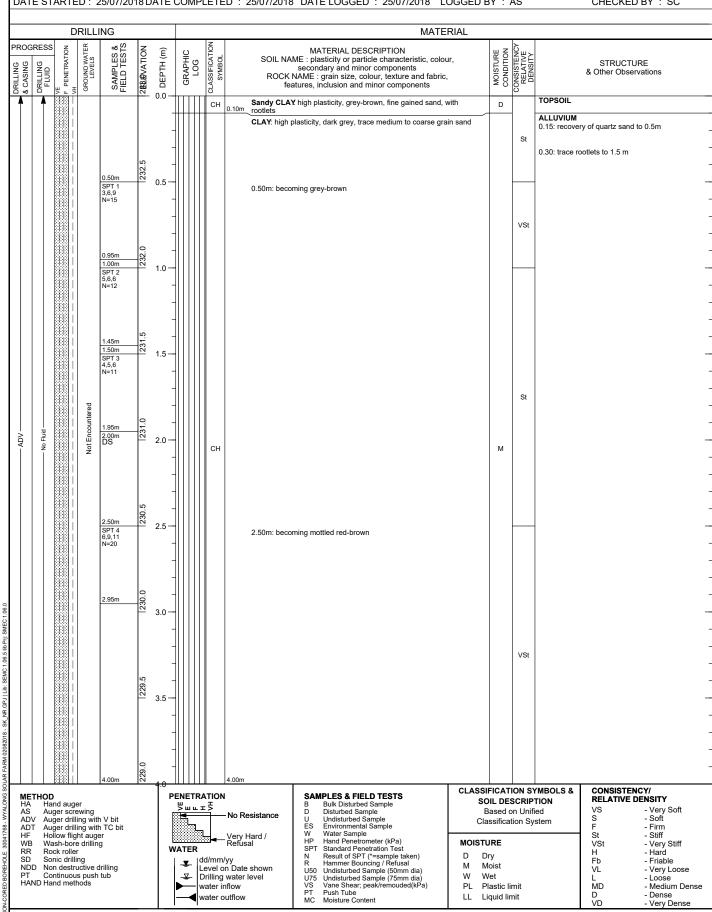
RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: SC

DA	ΤE	ST	ARTI	ED :	24/07/20	18 D	ATE (COMP	LETE	D : 24/07/2018	B DATE LOGGED : 24/07/	2018 LO	GGED B	Y : /	AS		CHECKE	DBY : SC	
				ORILL	ING							MATER	ΙΔΙ						_
PRO	GRI	ESS				7	_		Z O		MATERIAL RECORDS	IVIA I LN			≿				
DRILLING & CASING	_	FLUID	VE F PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2ELBVATION	o DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	SOIL NA ROCK fe	MATERIAL DESCRIPTION ME: plasticity or particle characte secondary and minor componer NAME: grain size, colour, texture atures, inclusion and minor compo	nts and fabric,		MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTI & Other Obse	JRE rvations	
			T		SPT 5 13,15,21 N=36		T.U -			CLAY: brow	n, mottled red-brown, trace fine to m coarse grain, sub-angular ferrugino	edium grain sa us gravel	and,			ALLUVIUM 4.05: Decrea	sed moisture co	ntent	
ADV —		No Fluid		Not Encountered	5.50m SPT 6 18,22,25 N=47	225.5	4.5 —		СН	trace fine to	coarse grain, sub-angular ferruginoi	us gravel		М	н	⊶.uo. Decrea	sed muisture co	ine it	
		V			5.95m	225.0	-	Ш	_	5.95m	pated at 5.05 m								
יסיס ן בלי בינוחס המסטרונית ון טומנים המסט						223.5 224.0 224.5	6.0 —			Hole Termin Target Depti	ated at 5.95 m								
MEAN TO THE TOTAL TO THE TOTAL THE T	ETHAS SOV OT E B R ODD C AND	HOD Har Aug Aug Holo Wa Roo Sor Nor Cor O Har	nd augger scr ger dril ger dril low flig sch bons k rollel n destr ntinuon	rewing Iling wi Iling wi ght aug re drilli er ling ructive	ng drilling	223.0	100000000000000000000000000000000000000	¥ L	Id/mm/	Very Hard / Refusal (yy n Date shown water level	SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample W Water Sample HP Hand Penetration Test N Result of SPT ("=sample tall R Hammer Bouncing / Refusa U50 Undisturbed Sample (50mm U75 Undisturbed Sample (75mm VS Vane Shear, peak/remoude PT Push Tube MC Moisture Content	dia)	MOISTU D Dr M Mc W W PL Pla	ased of ssifications of the state of the sta	SCRIP' on Unificion Sy	ed	CONSISTEI RELATIVE VS S F St VSt H Fb VL L MD D VD	NCY/ DENSITY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Der - Dense - Very Dense	·

See Explanatory Notes for details of abbreviations & basis of descriptions.

PROJECT: Wyalong Solar Farm


HOLE NO: **BH23** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530365.0, N: 6258645.0 (MGA94 Zone 55) SURFACE ELEVATION: 233.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm

HOLE NO: BH23
PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530365.0, N: 6258645.0 (MGA94 Zone 55) SURFACE ELEVATION : 233.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

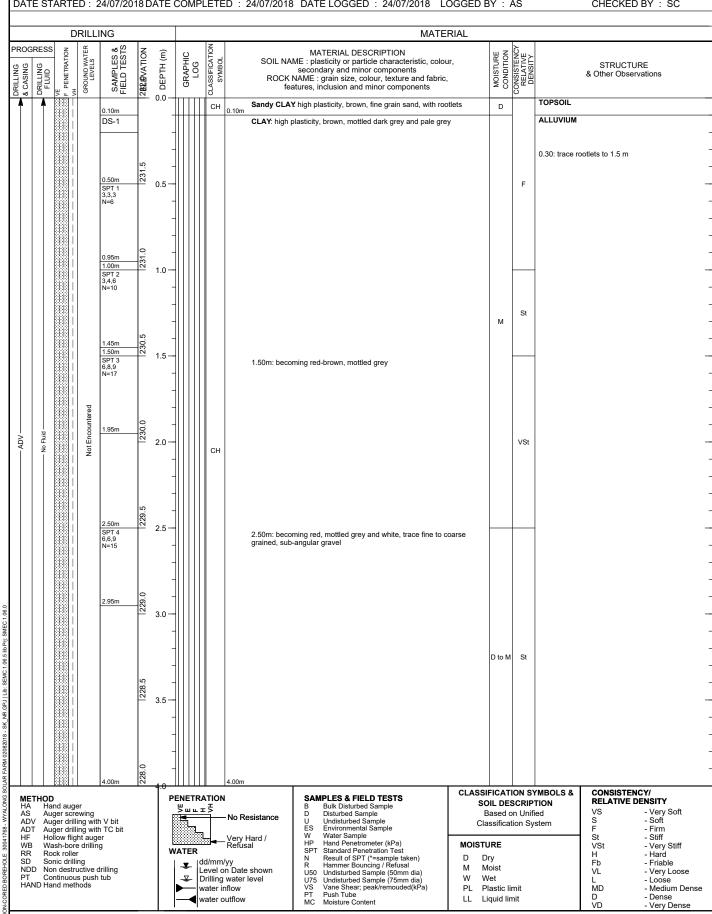
RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: SC

								D : 25/07/2018 DATE LOGGED : 25/07/2018 LC	OGGED B				CHECKED BY : SC
		RILLI						MATER					
& CASING BAS ON DRILLING SS FLUID SS	VE F PENETRATION VH	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2290VATION	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION SOIL NAME: plasticity or particle characteristic, colour secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components	г,	MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTURE & Other Observations
ADV – ADV – 8		Not Encountered	SPT 5 11,16,20 N=36 4.45m 5.50m SPT 6 12,18,24 N=42	227.5 228.0 228.5	4.0 —		СН	CLAY: high plasticity, pale grey, mottled brown and red-brown fine to medium grain sand		М	н	ALLUVIUM	of sandy silt to 5.95m
			5.95m	226.0 226.5 227.0	6.0—			6.95m Hole Terminated at 5.95 m Target Depth					
METHOD HA Hane AS Auge ADV Auge ADT Auge FH Holle WB Was RR Root SD Soni NDD Non PT Cont HAND Hane See Explan	d aug er screer driil ow flig driver was to be a screen driil ow flig driver was to be a screen driil ow flig driver was the constitution of the c	er ewing ling with that auge of dilling or ing uctive of is push	n V bit TC bit er g rrilling tub	225.0 225.5	7.5— - - - - - - - -	≖	± ₹	n Date shown U50 Undisturbed Sample (50mm dia) water level U75 Undisturbed Sample (75mm dia)	MOISTUI D Dry M Md W We	ased of sifications of the sification of the sif	SCRIP on Unifi ion Sy	ied	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard Fb - Friable VL - Very Loose L - Loose MD - Medium Dense

CLIENT : Lightsource BP LOCATION : Wyalong West

PROJECT: Wyalong Solar Farm


HOLE NO: **BH24** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.75 m

POSITION: E: 529614.0, N: 6259383.0 (MGA94 Zone 55) SURFACE ELEVATION: 232.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: SC

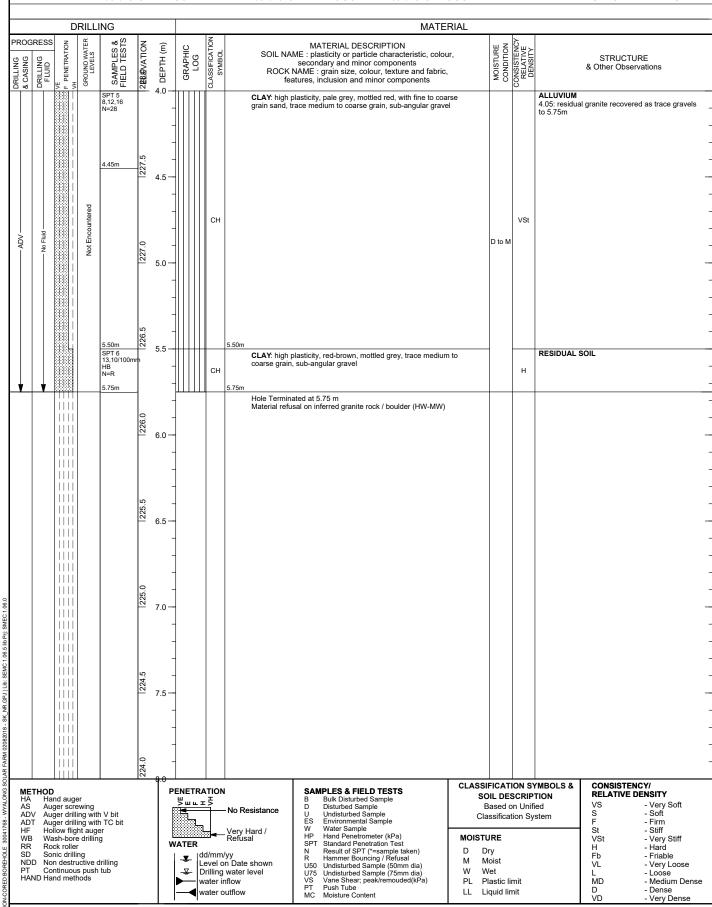
See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm


HOLE NO: BH24
PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.75 m

POSITION : E: 529614.0, N: 6259383.0 (MGA94 Zone 55) SURFACE ELEVATION : 232.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: SC

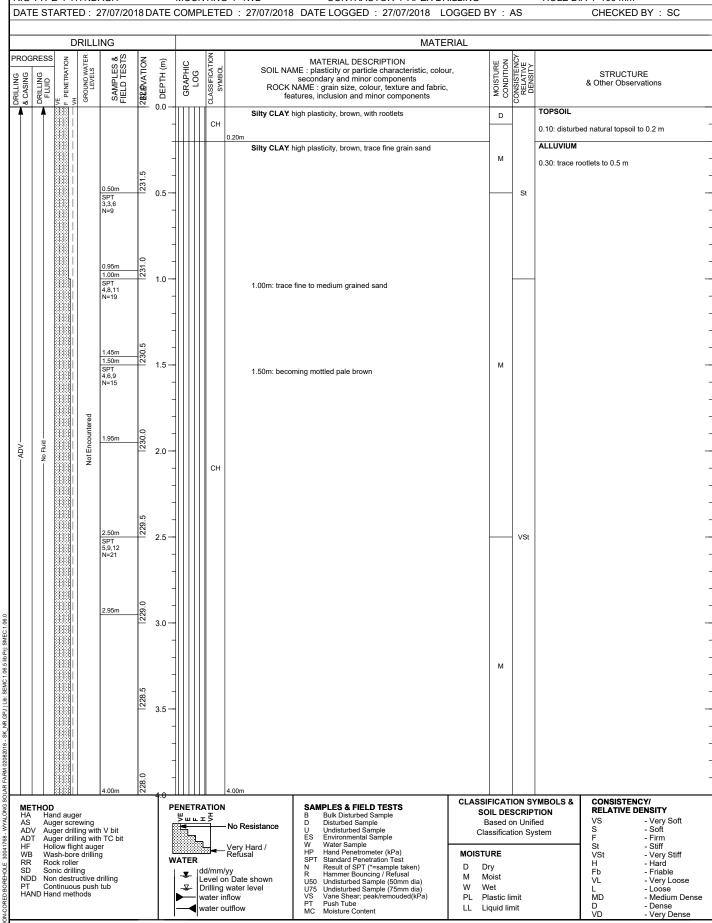
See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA


PROJECT: Wyalong Solar Farm

HOLE NO: BH25
PROJECT NUMBER: 30041768

PROJECT NUMBER: 300417 SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530380.0, N: 6259021.0 (MGA94 Zone 55) SURFACE ELEVATION : 232.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

See Explanatory Notes for details of abbreviations & basis of descriptions.

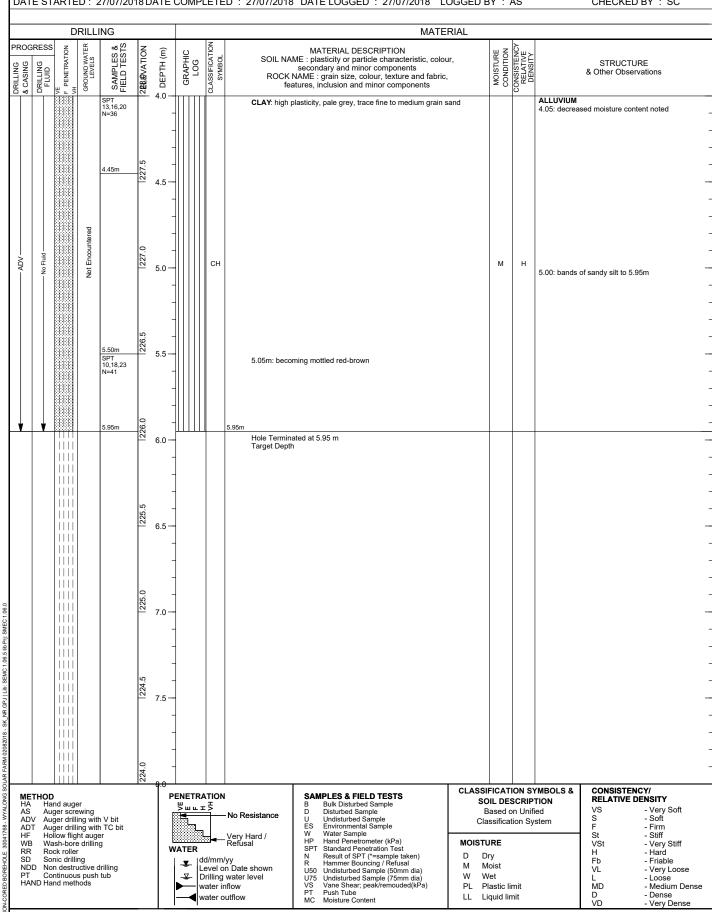
CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm


HOLE NO: **BH25** PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH : 5.95 m

POSITION: E: 530380.0, N: 6259021.0 (MGA94 Zone 55) SURFACE ELEVATION: 232.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS CHECKED BY: SC

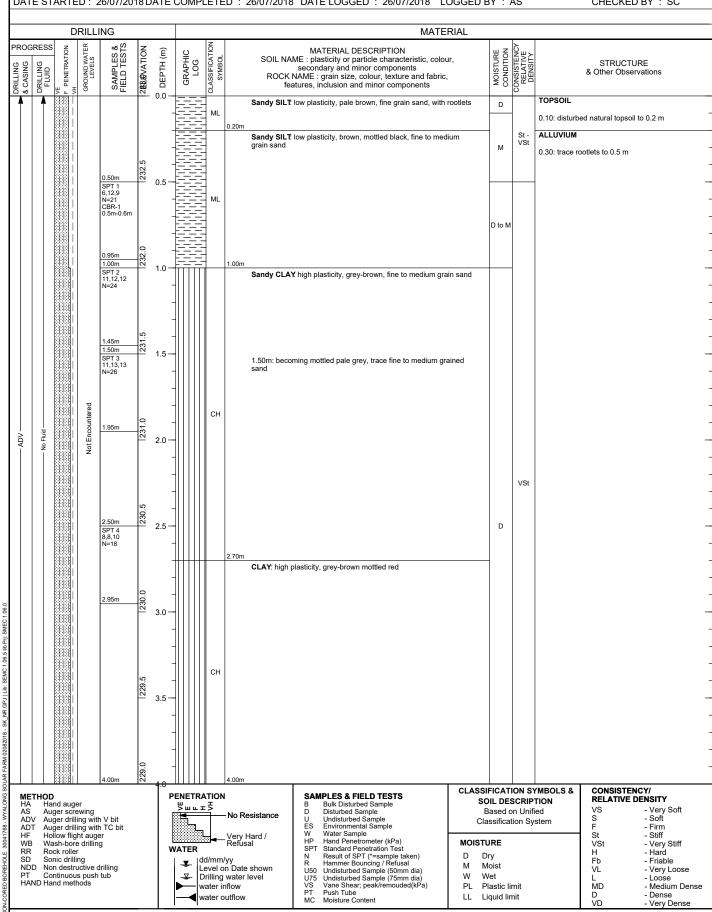
See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

PROJECT: Wyalong Solar Farm


HOLE NO: **BH26** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530111.0, N: 6258981.0 (MGA94 Zone 55) SURFACE ELEVATION: 233.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO : BH26 PROJECT NUMBER : 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

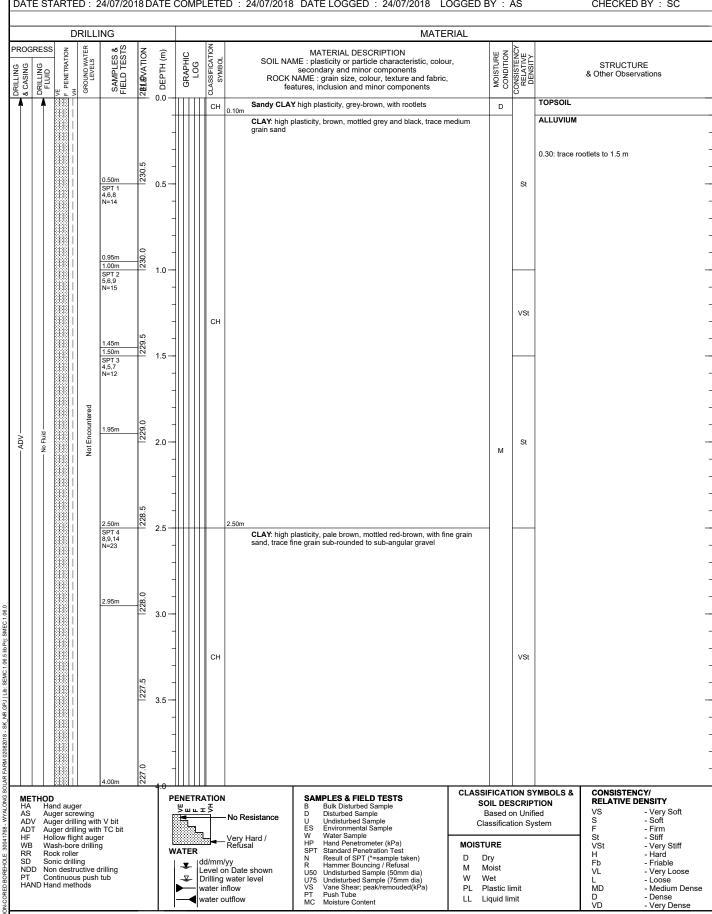
POSITION : E: 530111.0, N: 6258981.0 (MGA94 Zone 55) SURFACE ELEVATION : 233.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: SC

DATE	STA	ARTE	ED : 2	26/07/20	18 D.	ATE (COMP	LETE	D : 26/07/2018	DATE LOGGE	D : 26/07/2018 L	OGGED B	3Y : A	AS		CHECKE	DBY : SC
			RILL	INC							MATE	DIAI					
PROGR	PESS				T-2	_		z		MATERIAL				≻ :			
	DRILLING F	OF PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	229.0VATION	o DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe	secondary and mil	rticle characteristic, colo nor components colour, texture and fabric	ur,	MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Obse	JRE rvations
				SPT 5 13,16,16		4.0				plasticity, mottled red-	brown, trace fine grain sa				ALLUVIUM	of sandy silt to 5	.5m
▲ ADV —	No Fluid		Not Encountered	5.50m SPT 6 14,16,18 N=32	227.0 227.5 228.0 228.5	4.5 —		СН	5.50m: becc	ming mottled pale gre	brown, trace fine grain sa		D	Н		of sandy silt to 5	.5m
					226.0 226.5	6.5 — 7.0 —											
					225.0 225.5	7.5—											
MET HA AS ADV ADT HF WB RR SD NDD PT HAN	METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods						₹	Id/mm.	Very Hard / Refusal /yy n Date shown water level	SPT Standard Pe N Result of SP R Hammer Bo U50 Undisturbed	ad Sample imple Sample al Sample al Sample le ometer (kPa) netration Test T ("=sample taken) noning/ Refusal Sample (50mm dia) Sample (50mm dia) peak/remouded(kPa)	MOISTL D DO M M W W PL PI	oll DE: lased of ssificat	SCRIP on Unifition Sy	ied	CONSISTEI RELATIVE VS S F St VSt H Fb VL L MD D VD	NCY/ DENSITY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

PROJECT: Wyalong Solar Farm


HOLE NO: **BH27** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530108.0, N: 6258829.0 (MGA94 Zone 55) SURFACE ELEVATION: 231.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO: BH27
PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 530108.0, N: 6258829.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 24/07/2018 DATE COMPLETED: 24/07/2018 DATE LOGGED: 24/07/2018 LOGGED BY: AS CHECKED BY: SC

DAT	ES	TART	ED : 2	24/07/20	18 D	ATE (COMP	LETE	D : 24/07/2018	B DATE LOGGE	D : 24/07/2018	LOGGED E	3Y : A	AS		CHECKE	BY : SC
			ARII I	ING							МАТ	ERΙΔΙ					
PROG	DRILLING MATERIAL RESS 8																
DRILLING & CASING		- 은	GROUND WATER	SAMPLES & FIELD TESTS	2ELBVATION	Э DЕРТН (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fe	ME : plasticity or par secondary and min	ticle characteristic, co or components olour, texture and fabi		MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Obse	JRE rvations
				SPT 5 11,13,20 N=33					CLAY: high	plasticity, pale brown, fine grain sub-rounded	mottled red-brown, with to sub-angular gravel (fine grain (continued)			ALLUVIUM 4.05: Decrea	sed moisture cor	ntent
ADV —	No Fluid —		Not Encountered	11,13,20 N=33 4.45m 5.50m SPT 6 13,24,27 N=51	225.5 226.0	4.5 —		СН	sand, trače⊹	fine grain sub-rounded	to sub-angular gravel ((continued)	М	н	4.05: Decrea	sed moisture con	itent
 				5.95m	225.0	6.0	ШШ		5.95m Hole Termin	ated at 5.95 m							
						-			Target Dept								
		 			1224.5	6.5 —											
		111			224.0	7.0 - -											
						7.5 — - - -											
ME HAS AD AD HFF SD ND PT HA	METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods					PENETRATION WILL IN THE STATE OF THE STATE			Very Hard / Refusal /yy n Date shown water level	R Hammer Bou U50 Undisturbed S	d Sample mple sample al Sample al sample al meter (kPa) letration Test ("=sample taken) ncing / Refusal sample (50mm dia) sample (50mm dia) peak/remouded(kPa)	MOISTU D D M M W W PL P	Based of states	SCRIP' on Unifition Sy	ied	CONSISTEI RELATIVE I VS S F St VSt H Fb VL L MD D VD	ICY/ DENSITY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

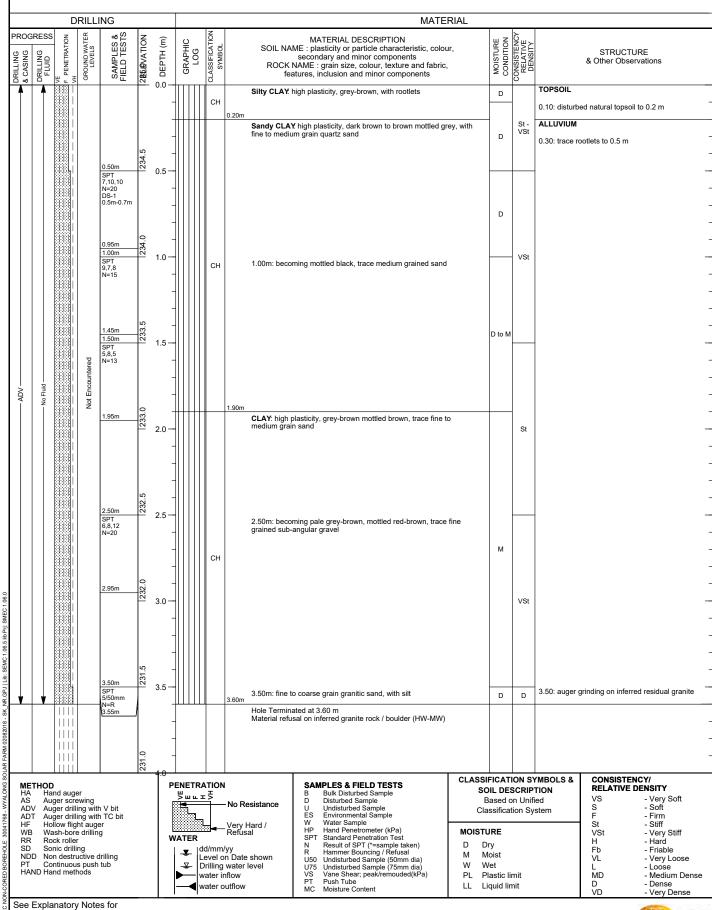
See Explanatory Notes for details of abbreviations & basis of descriptions.

PROJECT: Wyalong Solar Farm

CLIENT

: Lightsource BP

LOCATION: Wyalong West


HOLE NO: BH28
PROJECT NUMBER: 30041768

SHEET: 1 OF 1 FINAL DEPTH: 3.6 m

POSITION : E: 526721.0, N: 6258271.0 (MGA94 Zone 55) SURFACE ELEVATION : 235.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

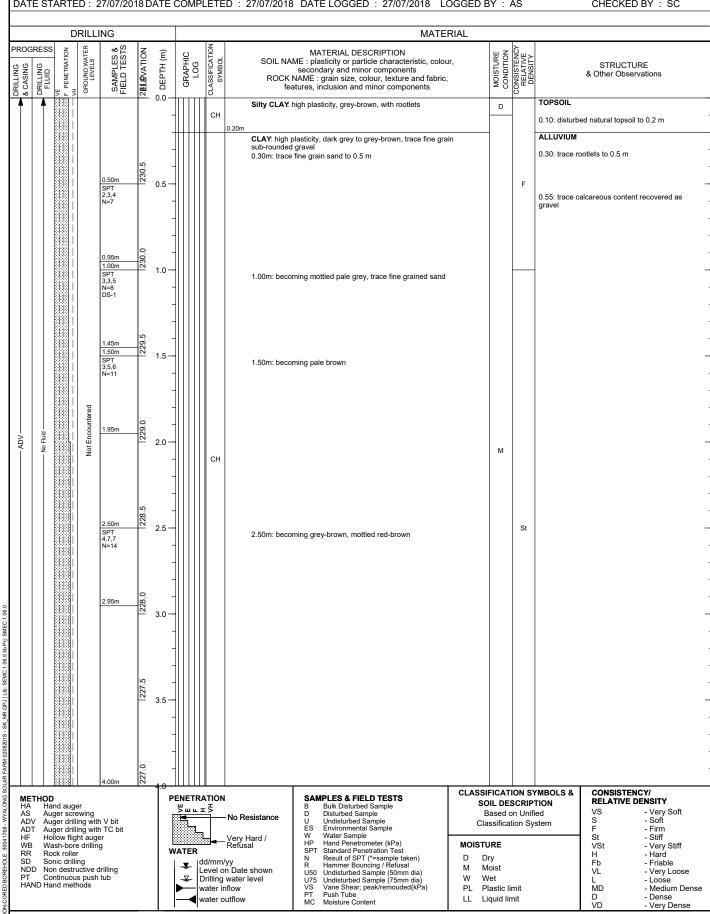
RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 26/07/2018 DATE COMPLETED: 26/07/2018 DATE LOGGED: 26/07/2018 LOGGED BY: AS CHECKED BY: SC

details of abbreviations

& basis of descriptions.

PROJECT: Wyalong Solar Farm


HOLE NO: **BH29** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 530883.0, N: 6258830.0 (MGA94 Zone 55) SURFACE ELEVATION: 231.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Lightsource BP

LOCATION: Wyalong West

SMEC

PROJECT: Wyalong Solar Farm

CLIENT : Lightsource BP LOCATION : Wyalong West

HOLE NO : BH29 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH : 5.95 m

INCLINATION° / ORIENTATION° : 90° / N/A POSITION : E: 530883.0, N: 6258830.0 (MGA94 Zone 55) SURFACE ELEVATION : 231.00 (AHD)

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING

DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS HOLE DIA: 100 mm

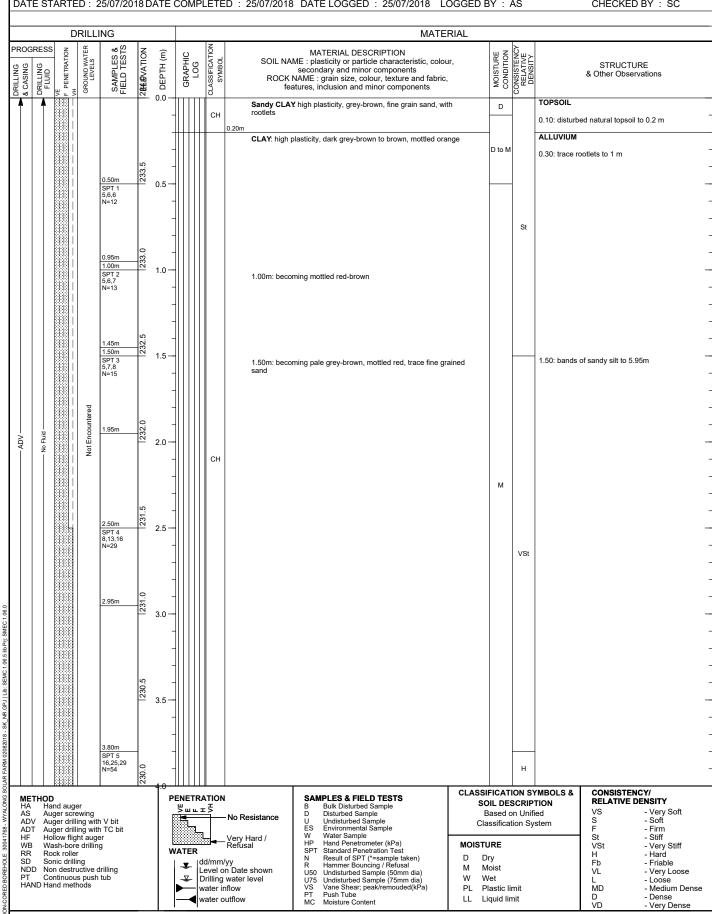
DA	DATE STARTED: 27/07/2018 DATE COMPLETED: 27/07/2018 DATE LOGGED: 27/07/2018 LOGGED BY: AS CHECKED BY					BY : SC											
		[DRILL	ING							MATE	ERIAL					
DRILLING & CASING	GRES DRIFTING	⊣ ≌	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	2EL@VATION	6.5 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NA ROCK fea	secondary and min	ticle characteristic, colo or components olour, texture and fabric		MOISTURE	CONSISTENCY RELATIVE DENSITY		STRUCTU & Other Obser	
				SPT 5,8,10 N=18					CLAY: high p	olasticity, dark grey to g gravel (continued)	grey-brown, trace fine gra	ain			ALLUVIUM		
^	nid —		Not Encountered	4.45m	226.0 226.5	4.5 — - - - -			4.50m: beco	ming mottled yellow				VSt			
ADV	No Fluid		Not E	5.50m SPT 16,19,24 N=43	225.5	5.5 —		СН	5.50m: beco	ming mottled red-brow	n, trace fine grained san	d	М	н	5.50: bands o	of sandy silt recov	rered to 5.95m
+	*	53535353 7777		5.95m	1225.0	6.0 —				ated at 5.95 m							
					224.5	6.5			Target Depth	1							
0.5 IIDTI]; SWECT LOUG					224.0	7.0											
N FAIMI DEVOED 10 - ON THE OFFICE OF THE OFFICE OF					223.0 223.5	7.5 —											
HAS ALL ALL SOLUTIONS - MUST NO THE SOLUTION	S A DV A DT A F H B W R R S DD N ODD N C	land aug .uger sc .uger dri	rewing Iling wit Iling wit ght aug re drillir er Iling ructive us push thods	h TC bit er g drilling ı tub	[2]		₹	dd/mm Level of Drilling	Very Hard / Refusal /yy on Date shown water level	R Hammer Bour U50 Undisturbed S	d Sample mple sample il Sample il Sample il Sample il Sample il Sample tetration Test ("=sample taken) noting / Refusal sample (50mm dia) sample (57mm dia) peak/remouded(kPa)	MOISTU D D M M W W PL P	lased of ssificat	SCRIP' on Unifition Sy	ed	CONSISTEN RELATIVE D VS S F St VS H F b VL L MD D VD	CY/ IENSITY - Very Soft - Soft - Firm - Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Very Dense

See Explanatory Notes for details of abbreviations & basis of descriptions.

SMEC AUSTRALIA

SMEC SMEC

PROJECT: Wyalong Solar Farm


HOLE NO: **BH30** PROJECT NUMBER: 30041768

SHEET: 1 OF 2 FINAL DEPTH: 5.95 m

POSITION: E: 529338.0, N: 6258643.0 (MGA94 Zone 55) SURFACE ELEVATION: 234.00 (AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: SC

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

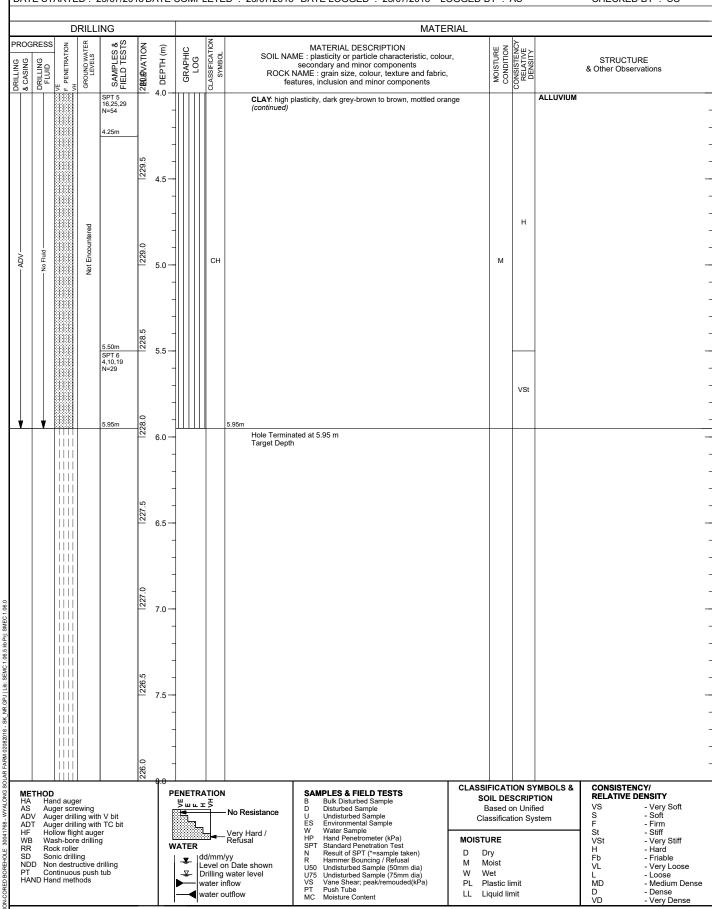
: Lightsource BP

LOCATION: Wyalong West

SMEC AUSTRALIA

SMEC

PROJECT: Wyalong Solar Farm


HOLE NO: BH30 PROJECT NUMBER: 30041768

SHEET: 2 OF 2 FINAL DEPTH: 5.95 m

POSITION : E: 529338.0, N: 6258643.0 (MGA94 Zone 55) SURFACE ELEVATION : 234.00 (AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: HYNDAGH MOUNTING: 4WD CONTRACTOR: APEX DRILLING HOLE DIA: 100 mm

DATE STARTED: 25/07/2018 DATE COMPLETED: 25/07/2018 DATE LOGGED: 25/07/2018 LOGGED BY: AS CHECKED BY: SC

CLIENT

: Lightsource BP

LOCATION: Wyalong West

Appendix D Laboratory Results

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08702/1

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm **Project No.:** 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac MR/

Accredited for compliance with ISO/IEC 17025

— Testing

Approved Signatory: J. Lamont surements included in the tent are traceable to an/national standards.
12712 (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH01, 0.5 - 1.0m

Field Sample ID

Date Sampled 26/07/2018 Source In-Situ Material Clay **Specification** AS Grading Submitted by client Sampling Method Sample ID S18DS-08702

Test Results Description Method Result Limits AS 1289.2.1.1 Moisture Content (%) 11.9 **Emerson Class Number** AS 1289.3.8.1 CLAY Soil Description Type of Water Distilled Temperature of Water (°C) 18.0

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08704/1

Accredited for compliance with ISO/IEC 17025 – Testing

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac MR/

Approved Signatory: J. Lamont or are tests, calibrations surements included in this tent are traceable to an/national standards.

12712 (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH03, 0.5 - 0.6m

Field Sample ID

Date Sampled 26/07/2018 Source In-Situ Material Clay **Specification** AS Grading Sampling Method Submitted by client Sample ID S18DS-08704

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	23.9	
Emerson Class Number	AS 1289.3.8.1	2	
Soil Description		CLAY	
Type of Water		Distilled	
Temperature of Water (°C)		18.0	

Comments

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08705/1

Issue No: 1

Accredited for compliance with ISO/IEC 17025 – Testing

Material Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: CG Request No.:

TRN: Lot No.:

IBC MRA NA

1125

he results of the tests, calibrations d'or measurements included in this document are freceable to Australian/national standards.

12712

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH05, 0.5 - 1.0m

Field Sample ID

Date Sampled 25/07/2018
Source In-Situ
Material Clay
Specification AS Grading
Sampling Method Submitted by client
Sample ID S18DS-08705

T	est	Results

Description	Method	Result Li	imits
Moisture Content (%)	AS 1289.2.1.1	17.0	
Emerson Class Number	AS 1289.3.8.1	2	
Soil Description		CLAY	
Type of Water		Distilled	
Temperature of Water (°C)		18.0	

Comments

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08707/1

Issue No: 1

Material Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm **Project No.:** 1007949

Order No.: CG Request No.:

TRN: Lot No.:

IDC MRA NA

Accredited for compliance with ISO/IEC 17025 – Testing

of the tests, calibrations unrements included in this ent are traceable to inhabonal standards.

12712

Of the tests, calibrations unrements included in this ent are traceable to (Melbourne Lab Supervisor)

Date of Issue: 9/08/2018

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH08, 0.5 - 1.0m

Field Sample ID 6

Date Sampled 26/07/2018
Source In-Situ
Material Clay
Specification AS Grading
Sampling Method Submitted by client
Sample ID S18DS-08707

Test Results						
Description	Method	Result	Limits			
Moisture Content (%)	AS 1289.2.1.1	22.1				
Emerson Class Number	AS 1289.3.8.1	2				
Soil Description		CLAY				
Type of Water		Distilled				
Temperature of Water (°C)		18.0				

Comments

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08708/1

Accredited for compliance with ISO/IEC 17025

— Testing

Issue No: 1

Material Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm **Project No.:** 1007949

Order No.: CG Request No.:

TRN: Lot No.:

Ilac-MRA N

100

he results of the tests, calibrations d/or measurements included in this document are fraceable to Australian/national standards.

12712

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH10, 0.4 - 0.6m

Field Sample ID

Date Sample ID

Date Sampled

Source

In-Situ

Clay

Specification

Sampling Method

Sample ID

Sam

Test Results Description Method Result Limits Moisture Content (%) AS 1289.2.1.1 16.4 **Emerson Class Number** AS 1289.3.8.1 CLAY Soil Description Type of Water Distilled Temperature of Water (°C) 18.0

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08709/1

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac MR/

Accredited for compliance with ISO/IEC 17025 – Testing

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

18.0

Approved Signatory: J. Lamont surements included in the tent are traceable to an/national standards.
12712 (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018

Sample Details

Location West Wyalong **Sample Location** BH12, 0.5 - 0.6m

Field Sample ID

Temperature of Water (°C)

Date Sampled 26/07/2018 Source In-Situ Material Clay **Specification** AS Grading Sampling Method Submitted by client S18DS-08709 Sample ID

Test Results							
Description	Method	Result	Limits				
Moisture Content (%)	AS 1289.2.1.1	24.5					
Emerson Class Number	AS 1289.3.8.1	2					
Soil Description		CLAY					
Type of Water		Distilled					

Comments

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08710/1

Issue No: 1

Material Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: CG Request No.:

S18DS-08710

TRN: Lot No.:

Ilac-MRA N

Accredited for compliance with ISO/IEC 17025 – Testing

1/25

he results of the tests, calibrations addor measurements included in this document are fraceable to Australian/national standards. 12712 Date of Issue: 9/08/2018

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Sample ID

Location West Wyalong **Sample Location** BH16, 0.5 - 1.0m

Field Sample ID

Date Sampled 26/07/2018
Source In-Situ
Material Clay
Specification AS Grading
Sampling Method Submitted by client

Test Results Description Method Result Limits AS 1289.2.1.1 Moisture Content (%) 22.5 **Emerson Class Number** AS 1289.3.8.1 CLAY Soil Description Type of Water Distilled Temperature of Water (°C) 18.0

Comments

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08713/1

Accredited for compliance with ISO/IEC 17025 – Testing

Issue No: 1

Material Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: CG Request No.:

TRN: Lot No.:

IIac-MRA N

And 5

Sample Details

Location West Wyalong **Sample Location** BH26, 0.5 - 0.6m

Field Sample ID 12

Date Sampled 26/07/2018
Source In-Situ
Material Sand
Specification AS Grading
Sampling Method Submitted by client
Sample ID S18DS-08713

Т	Act	3	≀es	ш	te
ш	CO	3	163	u	LO

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	7.6	
Emerson Class Number	AS 1289.3.8.1	5	
Soil Description		Sand	
Type of Water		Distilled	
Temperature of Water (°C)		18.0	

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08727/1 Issue No: 2

Accredited for compliance with ISO/IEC 17025

This report replaces all previous issues of report no 'MAT:S18DS-08727/1'.

Material Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

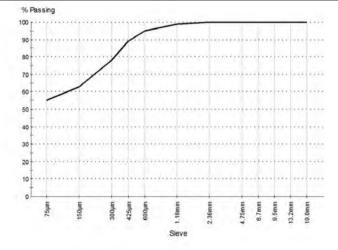
Project: Wyalong Solar Farm **Project No.:** 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac-MRA

Approved Signatory: J. Lamont (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018 ent are traceable to an/national standards. 12712 Date of Issue: THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details


Location West Wyalong Sample Location BH26, 1.0m

Field Sample ID

Date Sampled 6/07/2018 Source In-Situ Sandy CLAY Material **Specification AS Grading** Sampling Method Submitted by client Sample ID S18DS-08727

other root recount						
Description	Method	Result	Limits			
Moisture Content (%)	AS 1289.2.1.1	10.7		-		

Particle Size Distribution

AS 1289.3.6.1

Drying by: Oven **Date Tested:**

Note: Sample W	/ashed	
Sieve Size	% Passing	Limits
19.0mm	100	
13.2mm	100	
9.5mm	100	
6.7mm	100	
4.75mm	100	
2.36mm	100	
1.18mm	99	
600µm	95	
425µm	89	
300µm	78	
150µm	63	
75um	55	

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: **CG Request No.:**

TRN: Lot No.:

Accredited for compliance with ISO/IEC 17025

— Testing

Issue No: 1

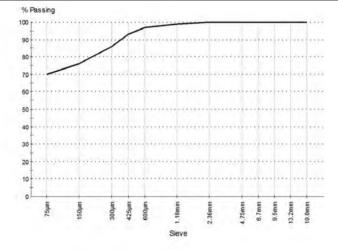
Report No: MAT:S18DS-08730/1

nent are traceable to in/national standards. 12712

Approved Signatory: J. Lamont (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018 Date of Issue: THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong Sample Location BH17, 0.5m


Field Sample ID 5

Date Sampled 27/07/2018 Source In-Situ Clay with Sand Material

Specification AS Grading Sampling Method Submitted by client Sample ID S18DS-08730

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	15.7	

Particle Size Distribution

AS 1289.3.6.1

Drying by: Oven **Date Tested:**

Note: Sample Was	shed	
Sieve Size	% Passing	Limits
19.0mm	100	
13.2mm	100	
9.5mm	100	
6.7mm	100	
4.75mm	100	
2.36mm	100	
1.18mm	99	
600µm	97	
425µm	93	
300µm	86	
150µm	76	
75µm	70	

Comments

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08726/1 Issue No: 2

Accredited for compliance with ISO/IEC 17025

This report replaces all previous issues of report no 'MAT:S18DS-08726/1'.

Material Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004 Wyalong Solar Farm

Project: Wyalong So **Project No.:** 1007949

Order No.: CG Request No.:

TRN: Lot No.:

Jac-MRA

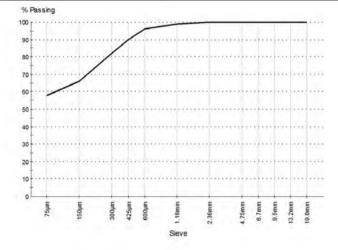
1/25

he results of the tests, calibrations door measurements included in this document are fraceable to Australian/national standards. 12712 Date of Issue: 22/08/2018

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Sample ID


Location West Wyalong **Sample Location** BH26, 0.5m

Field Sample ID

Date Sampled26/07/2018SourceIn-SituMaterialSandy SILTSpecificationAS GradingSampling MethodSubmitted by client

Other Test ResultsDescriptionMethodResultLimitsMoisture Content (%)AS 1289.2.1.110.0

Particle Size Distribution

S18DS-08726

AS 1289.3.6.1

Drying by: Oven Date Tested:

Note: Sample V	Vashed	
Sieve Size	% Passing	Limits
19.0mm	100	
13.2mm	100	
9.5mm	100	
6.7mm	100	
4.75mm	100	
2.36mm	100	
1.18mm	99	
600µm	96	
425µm	90	
300µm	82	
150µm	66	
75um	58	

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08728/1

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac-MR

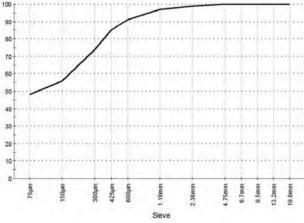
Accredited for compliance with ISO/IEC 17025

— Testing

Approved Signatory: J. Lamont (Melbourne Lab Supervisor)
Date of Issue: 22/08/2018 ent are traceable to in/national standards. 12712 Date of Issue: THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong Sample Location BH28, 0.5m


Field Sample ID

Date Sampled 26/07/2018 Source In-Situ Sandy CLAY Material **Specification AS Grading** Sampling Method

Submitted by client Sample ID S18DS-08728

Other Test Results Description Method Limits Result Moisture Content (%) AS 1289.2.1.1 10.5

Particle Size Distribution

AS 1289.3.6.1

Drying by: Oven **Date Tested:**

Note: Sample Was	shed	
Sieve Size	% Passing	Limits
19.0mm	100	
13.2mm	100	
9.5mm	100	
6.7mm	100	
4.75mm	100	
2.36mm	99	
1.18mm	97	
600µm	91	
425µm	85	
300µm	74	
150µm	56	
75µm	48	

Comments

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Material Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: CG Request No.:

TRN: Lot No.:

Report No: MAT:S18DS-08729/1 Issue No: 1

Accredited for compliance with ISO/IEC 17025 – Testing

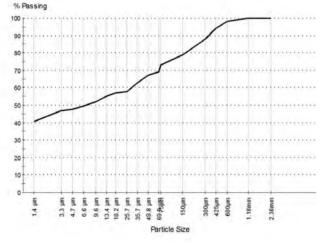
The results of the tests, calibrations addor measurements included in this document are traceable to Australian/national standards. 12712 Date of Issue: 22/08/2018

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Sample ID

LocationWest WyalongSample LocationBH18, 1.0m


Field Sample ID 4

Date Sampled27/07/2018SourceIn-SituMaterialSilty ClaySpecificationAS GradingSampling MethodSubmitted by client

Other Teet Posuite

Other Test Results			
Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	13.7	
Hydrometer Type	AS 1289.3.6.3	g/L	
Dispersion Method		Mechanical stirrer	

Particle Size Distribution

S18DS-08729

AS 1289.3.6.3

Drying by: Oven Date Tested:

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08736/1

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm **Project No.:** 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac MR/ NATA

Accredited for compliance with ISO/IEC 17025 – Testing

Approved Signatory: J. Lamont surements included in this nent are traceable to an/national standards.

12712 (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH03, 0.5m

Field Sample ID 11

26/07/2018 **Date Sampled** Source In-Situ Material CLAY **Specification** AS Grading Sampling Method Submitted by client Sample ID S18DS-08736

lest Results			
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	18.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		Yes	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.2	65	
Plastic Limit (%)	AS 1289.3.2.1	22	
Plasticity Index (%)	AS 1289.3.3.1	43	

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08737/1

Accredited for compliance with ISO/IEC 17025 – Testing

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac MR/ NATA

Approved Signatory: J. Lamont surements included in this nent are traceable to an/national standards.

12712 (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH05, 0.5m

Field Sample ID 12

25/07/2018 **Date Sampled** Source In-Situ Material CLAY **Specification** AS Grading Sampling Method Submitted by client Sample ID S18DS-08737

lest Results			
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	20.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		Yes	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.2	67	
Plastic Limit (%)	AS 1289.3.2.1	18	
Plasticity Index (%)	AS 1289.3.3.1	49	

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08738/1

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac MR/

Accredited for compliance with ISO/IEC 17025 – Testing

Approved Signatory: J. Lamont surements included in this nent are traceable to an/national standards.

12712 (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH10, 0.5m

Field Sample ID 13

26/07/2018 **Date Sampled** Source In-Situ Material CLAY **Specification** AS Grading Sampling Method Submitted by client Sample ID S18DS-08738

Test Results			
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	22.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		Yes	
Cracking		Yes	
Liquid Limit (%)	AS 1289.3.1.2	78	
Plastic Limit (%)	AS 1289.3.2.1	19	
Plasticity Index (%)	AS 1289.3.3.1	59	

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08739/1

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac MR/

Accredited for compliance with ISO/IEC 17025 – Testing

Approved Signatory: J. Lamont surements included in the tent are traceable to an/national standards.
12712 (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH12, 0.5m

Field Sample ID 14

Date Sampled 26/07/2018 Source In-Situ Material CLAY **Specification** AS Grading Submitted by client Sampling Method Sample ID S18DS-08739

Test Results Description Method Result Limits Sample History AS 1289.1.1 Oven-dried Preparation . AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 20.0 Mould Length (mm) 250 Crumbling No Curling Yes Cracking Yes AS 1289.3.1.2 Liquid Limit (%) 78 Plastic Limit (%) AS 1289.3.2.1 21 Plasticity Index (%) AS 1289.3.3.1

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S18DS-08740/1

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: **CG Request No.:**

TRN: Lot No.: ilac-MR/

Accredited for compliance with ISO/IEC 17025 – Testing

Approved Signatory: J. Lamont surements included in this nent are traceable to an/national standards.

12712 (Melbourne Lab Supervisor)
Date of Issue: 9/08/2018

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Location West Wyalong **Sample Location** BH16, 0.5m

Field Sample ID 15

26/07/2018 **Date Sampled** Source In-Situ Material CLAY **Specification** AS Grading Sampling Method Submitted by client S18DS-08740 Sample ID

Test Results					
Description	Method	Result	Limits		
Sample History	AS 1289.1.1	Oven-dried			
Preparation	AS 1289.1.1	Dry Sieved			
Linear Shrinkage (%)	AS 1289.3.4.1	20.0			
Mould Length (mm)		250			
Crumbling		No			
Curling		Yes			
Cracking		No			
Liquid Limit (%)	AS 1289.3.1.2	58			
Plastic Limit (%)	AS 1289.3.2.1	19			
Plasticity Index (%)	AS 1289.3.3.1	39			

Comments

Head Office
25 Metcalf Drive
DANDENONG SOUTH VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 8796 7944

MOISTURE CONTENT REPORT

Customer: SMEC Report Number: W18DS02263

Customer Address: Level 10, 71 Queens Road, MELBOURNE, VIC

Project: Wyalong Solar Farm CG Job No: 1007949

Testing performed and reported at our Dandenong South Laboratory 12712

Location: West Wyalong Test Method: AS 1289 2.1.1

Customer Order No.: 30041768 Page: 1 of 1

Sample No.:	S18DS-08731	S18DS-08732	S18DS-08733	S18DS-08734	S18DS-08735		
ID No.:	1	2	3	4	5		
Lot No.:	-	-	-	-	-		
Date Sampled:	28/07/2018	28/07/2018	28/07/2018	28/07/2018	28/07/2018		
Time Sampled:	am/pm	am/pm	am/pm	am/pm	am/pm		
Date Tested:	2/08/2018	2/08/2018	2/08/2018	2/08/2018	2/08/2018		
Material Source:	In-situ	In-situ	In-situ	In-situ	In-situ		
Material Description:	CLAY	CLAY	CLAY	CLAY	CLAY		
To Be Used As:	Material Analysis						
	BH16	BH26	BH18	BH04	BH12		
Sample Location :	1.0m	4.0m	4.0m	2.5m	4.0m		
Layer Depth (mm):	-	-	-	-	-		
Test Depth (mm):	-	-	-	-	-		
Sampling Procedure:	Client Sampled						
Moisture Content (%):	21.9	23.5	18.9	21.5	24.3		

Remarks:

Accredited for compliance with ISO/IEC 17025. The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Jy Inns

Form No.: **CG.319.003**

Issue Date: 16/06/2018

J Lamont

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: CBR:S18DS-08702

Issue No: 1

California Bearing Ratio Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

CG Request No.: Order No.:

TRN: Lot No.:

Date Sampled: 26/07/2018

Clay

C. Ranaraja

Material:

Tested By:

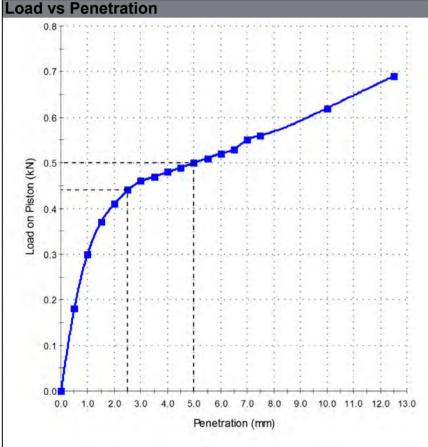
Accredited for compliance with ISO/IEC 17025

Approved Signatory: M. Robinson

(Senior Technician)

12712 Date of Issue: 21/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details


Sample ID: S18DS-08702

Sampled By: Client

Date Tested:

Location: BH01, 0.5 - 1.0m

14/08/2018

Test Results AS 1289.6.1.1 - 2014 CBR At 2.5mm (%): Maximum Dry Density (t/m3): 1.81 Optimum Moisture Content (%): 15.5 Dry Density before Soaking (t/m3): 1.76 Density Ratio before Soaking (%): 97.5 Moisture Content before Soaking (%): 15.5 Moisture Ratio before Soaking (%): 100.5 Dry Density after Soaking (t/m3): 1.71 Density Ratio after Soaking (%): 94.5 Swell (%): 3.0 Moisture Content of Top 30mm (%): 22.4 Compactive Effort: Standard AS 1289.5.1.1 Surcharge Mass (kg): 4.50 Period of Soaking (Days): Oversize Material (%): CBR Moisture Content Method: AS 1289.2.1.1 Date/Time Cure Start 07/ 08/ 2018 00:00 Date/Time Cure End: 10/ 08/ 2018 00:00

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: CBR:S18DS-08704

Issue No: 1

California Bearing Ratio Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: CG Request No.:

TRN: Lot No.:

Accredited for compliance with ISO/IEC 17025

– Testing

Date Sampled: 26/07/2018

Clay

C. Veal

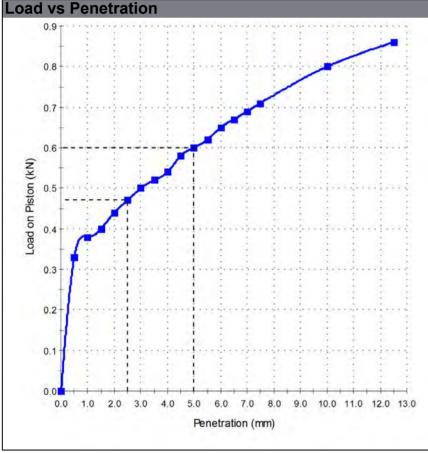
Material:

Tested By:

The results of the tests, calibrations adjor measurements included in this Approved Signatory: M. Robinson

(Senior Technician)

Australian/national standards. Volentin Tear Translation 12712 Date of Issue: 21/08/2018
THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL


Sample Details

Sample ID: S18DS-08704

Sampled By: Client

Location: BH03, 0.5 - 0.6m

Date Tested: 21/08/2018

	Test Results							
	AS 1289.6.1.1 - 2014							
	CBR At 2.5mm (%):	3.5						
	Maximum Dry Density (t/m³):	1.57						
	Optimum Moisture Content (%):	23.5						
	Dry Density before Soaking (t/m³):	1.53						
	Density Ratio before Soaking (%):	97.0						
	Moisture Content before Soaking (%):	23.7						
	Moisture Ratio before Soaking (%):	100.0						
	Dry Density after Soaking (t/m³):	1.51						
	Density Ratio after Soaking (%):	96.0						
	Swell (%):	1.0						
	Moisture Content of Top 30mm (%):	25.8						
	Compactive Effort:	Standard						
		AS 1289.5.1.1						
	Surcharge Mass (kg):	4.50						
	Period of Soaking (Days):	4						
	Oversize Material (%):	0						
	CBR Moisture Content Method:	AS 1289.2.1.1						
	Date/Time Cure Start:	13/ 08/ 2018 00:00						
	Date/Time Cure End:	16/ 08/ 2018 00:00						
- 1	1							

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

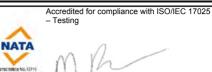
Report No: CBR:S18DS-08705

Issue No: 1

California Bearing Ratio Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road


MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: **CG Request No.:**

TRN: Lot No.:

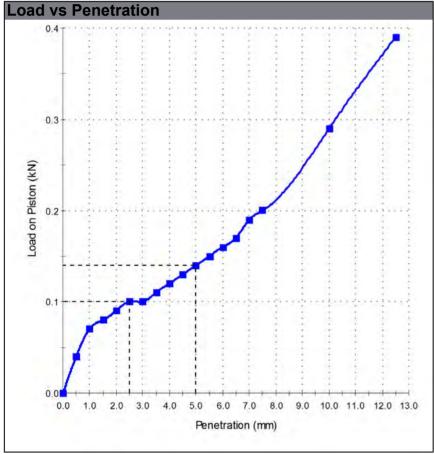
Approved Signatory: M. Robinson

(Senior Technician)

n/national st 12712 Date of Issue: 21/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Sample ID: S18DS-08705


Sampled By: Client

Date Tested:

Location: BH05, 0.5 - 1.0m

13/08/2018

	Test Results							
	AS 1289.6.1.1 - 2014							
	CBR At 2.5mm (%):	1.0						
	Maximum Dry Density (t/m³):	1.64						
	Optimum Moisture Content (%):	20.5						
	Dry Density before Soaking (t/m³):	1.61						
	Density Ratio before Soaking (%):	98.5						
	Moisture Content before Soaking (%):	20.0						
	Moisture Ratio before Soaking (%):	98.5						
	Dry Density after Soaking (t/m³):	1.55						
	Density Ratio after Soaking (%):	95.0						
	Swell (%):	3.5						
	Moisture Content of Top 30mm (%):	27.4						
	Compactive Effort:	Standard						
		AS 1289.5.1.1						
	Surcharge Mass (kg):	4.50						
	Period of Soaking (Days):	4						
	Oversize Material (%):	0						
	CBR Moisture Content Method:	AS 1289.2.1.1						
	Date/Time Cure Start:	06/ 08/ 2018 00:00						
	Date/Time Cure End:	09/ 08/ 2018 00:00						
- 1								

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: CBR:S18DS-08707

Issue No: 1

California Bearing Ratio Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

CG Request No.: Order No.:

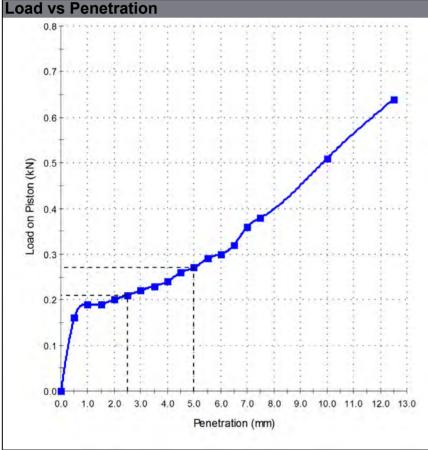
TRN: Lot No.: Accredited for compliance with ISO/IEC 17025

Clay

C. Veal

Approved Signatory: M. Robinson

(Senior Technician)


12712 Date of Issue: 21/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Date Sampled: 26/07/2018 Sample ID: S18DS-08707 Sampled By: Material: Client

Location: BH08, 0.5 - 1.0m Tested By:

Date Tested: 20/08/2018

Test Results AS 1289.6.1.1 - 2014 CBR At 2.5mm (%): 1.5 Maximum Dry Density (t/m3): 1.56 Optimum Moisture Content (%): 24.0 Dry Density before Soaking (t/m3): 1.53 Density Ratio before Soaking (%): 97.5 Moisture Content before Soaking (%): 24.1 Moisture Ratio before Soaking (%): 100.0 Dry Density after Soaking (t/m3): 1.50 Density Ratio after Soaking (%): 96.0 Swell (%): 2.0 Moisture Content of Top 30mm (%): 28.7 Compactive Effort: Standard AS 1289.5.1.1 Surcharge Mass (kg): 4.50 Period of Soaking (Days): Oversize Material (%): CBR Moisture Content Method: AS 1289.2.1.1 Date/Time Cure Start: 13/08/2018 00:00 Date/Time Cure End: 16/08/2018 00:00

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: CBR:S18DS-08709

Issue No: 1

California Bearing Ratio Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

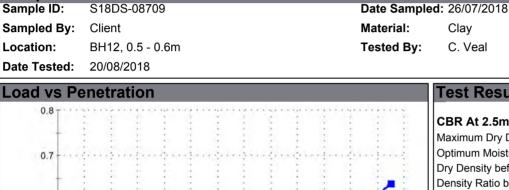
Project No.: 1007949

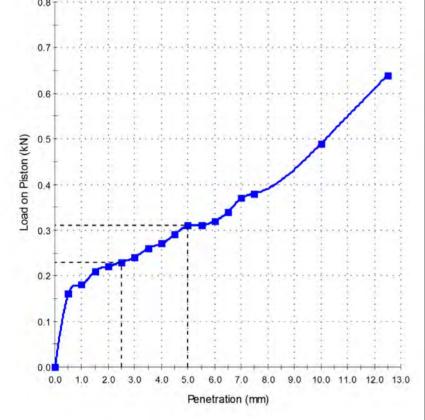
Order No.: **CG Request No.:**

TRN: Lot No.: Accredited for compliance with ISO/IEC 17025 – Testing

Approved Signatory: M. Robinson

(Senior Technician)


n/national st 12712 Date of Issue: 21/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL


Sample Details

Sample ID: S18DS-08709

Sampled By:

Location:

	Test Results							
	AS 1289.6.1.1 - 2014							
	CBR At 2.5mm (%):	1.5						
	Maximum Dry Density (t/m³):	1.57						
	Optimum Moisture Content (%):	23.0						
	Dry Density before Soaking (t/m³):	1.53						
	Density Ratio before Soaking (%):	97.5						
	Moisture Content before Soaking (%):	23.3						
	Moisture Ratio before Soaking (%):	101.5						
	Dry Density after Soaking (t/m³):	1.50						
	Density Ratio after Soaking (%):	95.5						
	Swell (%):	2.5						
	Moisture Content of Top 30mm (%):	27.5						
	Compactive Effort:	Standard						
		AS 1289.5.1.1						
	Surcharge Mass (kg):	4.50						
	Period of Soaking (Days):	4						
	Oversize Material (%):	0						
	CBR Moisture Content Method:	AS 1289.2.1.1						
	Date/Time Cure Start:	13/ 08/ 2018 00:00						
	Date/Time Cure End:	16/ 08/ 2018 00:00						
- 1								

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: CBR:S18DS-08710

Accredited for compliance with ISO/IEC 17025

Issue No: 1

California Bearing Ratio Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

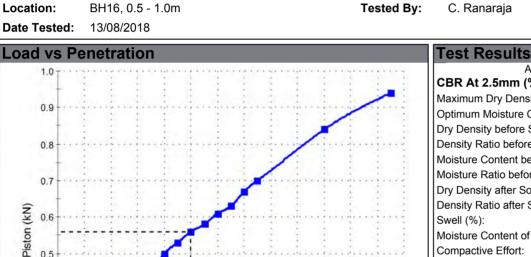
Project No.: 1007949

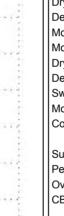
CG Request No.: Order No.:

TRN: Lot No.: NATA

Approved Signatory: M. Robinson

(Senior Technician)


n/national st 12712 Date of Issue: 21/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL


Sample Details

Sample ID: S18DS-08710

Sampled By: Client

Location: BH16, 0.5 - 1.0m

Date Sampled: 26/07/2018

Clay

Material:

AS 1289.6.1.1 - 2014 CBR At 2.5mm (%): 3.0 Maximum Dry Density (t/m3): 1.62 Optimum Moisture Content (%): 21.0 Dry Density before Soaking (t/m³): 1.60 Density Ratio before Soaking (%): 99.0 Moisture Content before Soaking (%): 20.2 Moisture Ratio before Soaking (%): 96.0 Dry Density after Soaking (t/m3): 1.57 Density Ratio after Soaking (%): 97.0 Swell (%): 2.0 Moisture Content of Top 30mm (%): 24.7 Compactive Effort: Standard

AS 1289.5.1.1

Surcharge Mass (kg): 4.50 Period of Soaking (Days): Oversize Material (%):

CBR Moisture Content Method: AS 1289.2.1.1

Date/Time Cure Start 07/ 08/ 2018 00:00 Date/Time Cure End: 09/ 08/ 2018 00:00

	[a]	0.4			į	·	•	 ÷	 	
		0.4						 	 	
		0.5 0.5 0.0 0.0 0.0 0.0	ر	1					 ***	
		Piston (K	 	/	مر				 	
0.7						مر	1			

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: CBR:S18DS-08712

Accredited for compliance with ISO/IEC 17025 – Testing

Issue No: 1

California Bearing Ratio Test Report

Client: SMEC

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

Order No.: CG Request No.:

TRN: Lot No.:

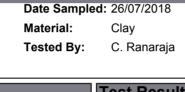
lac-MRA

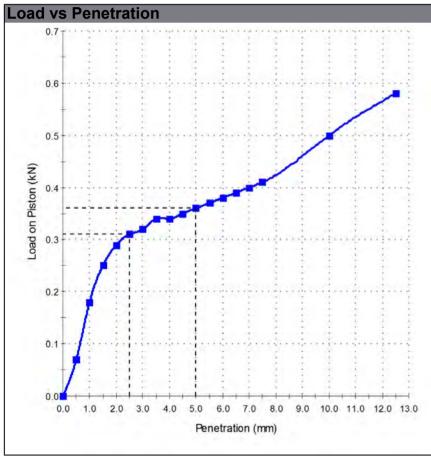
The results of the tests, calibrations and/or measurements included in this Approved Signatory: M. Robinson

(Senior Technician)

Australian/national standards. (Settliol Technician)
12712 Date of Issue: 21/08/2018
THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details


Sample ID: S18DS-08712


Sampled By: Client

Date Tested:

Location: BH21, 0.5 - 1.0m

13/08/2018

	Test Results	
	AS 1289.6.1.1 - 20 ⁻	14
	CBR At 2.5mm (%):	2.5
	Maximum Dry Density (t/m³):	1.76
	Optimum Moisture Content (%):	16.0
	Dry Density before Soaking (t/m³):	1.74
	Density Ratio before Soaking (%):	98.5
	Moisture Content before Soaking (%):	15.8
	Moisture Ratio before Soaking (%):	99.5
	Dry Density after Soaking (t/m³):	1.69
	Density Ratio after Soaking (%):	95.5
	Swell (%):	3.0
	Moisture Content of Top 30mm (%):	21.5
	Compactive Effort:	Standard
		AS 1289.5.1.1
	Surcharge Mass (kg):	4.50
	Period of Soaking (Days):	4
	Oversize Material (%):	0
	CBR Moisture Content Method:	AS 1289.2.1.1
	Date/Time Cure Start:	07/ 08/ 2018 00:00
	Date/Time Cure End:	09/ 08/ 2018 00:00
-		

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: CBR:S18DS-08713

Issue No: 1

California Bearing Ratio Test Report

Client: **SMEC**

Address: Level 10, 71 Queens Road

MELBOURNE VIC 3004

Project: Wyalong Solar Farm

Project No.: 1007949

CG Request No.: Order No.:

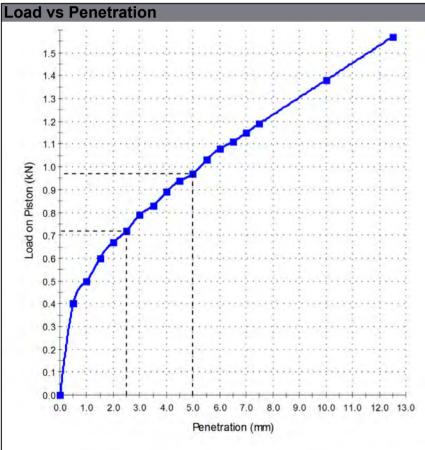
TRN: Lot No.: lac-MRA

Sand

C. Ranaraja

Accredited for compliance with ISO/IEC 17025

Approved Signatory: M. Robinson


(Senior Technician)

12712 Date of Issue: 21/08/2018 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Date Sampled: 26/07/2018 Sample ID: S18DS-08713 Sampled By: Material: Client Location: BH26, 0.5 - 0.6m Tested By:

Date Tested: 13/08/2018

Test Results AS 1289.6.1.1 - 2014 CBR At 2.5mm (%): Maximum Dry Density (t/m3): 1.97 Optimum Moisture Content (%): 10.5 Dry Density before Soaking (t/m3): 1.93 Density Ratio before Soaking (%): 98.0 Moisture Content before Soaking (%): 10.3 Moisture Ratio before Soaking (%): 98.5 Dry Density after Soaking (t/m3): 1.91 Density Ratio after Soaking (%): 97.0 Swell (%): 1.0 Moisture Content of Top 30mm (%): 15.0 Compactive Effort: Standard AS 1289.5.1.1 Surcharge Mass (kg): 4.50 Period of Soaking (Days): Oversize Material (%): CBR Moisture Content Method: AS 1289.2.1.1 Date/Time Cure Start: 08/ 08/ 2018 00:00 Date/Time Cure End: 09/ 08/ 2018 00:00

Head Office:

25 Metcalf Street Dandenong South VIC 3175

Ph: +61 8796 7900

Thermal Resistivity Dryout Curve Report

Customer: SMEC Report No: W18DS02259

Customer Address: Level 10, 71 Queens Rd Melbourne VIC 3004 CG Project No: 1007949

Project: Wyalong Solar Farm **Report Date: 21/08/18**

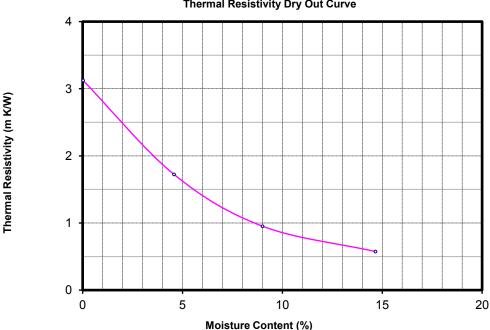
Test Method: TR LAB.2013 (In-House) Project Location: Wyalong

Customer Request No.: 30041768 **Page:** 1 of 3

Testing performed and reported at our Dandenong South Laboratory

Sample No: S18DS-08703 **Date Moulded: 13/08/2018**

Client Sample ID: 2 Sampling Procedure: As Received


Sample Location: BH01 @ 1.0-1.5m Sample Description: CLAY **Date Sampled: 26/07/2018** Sample History: Remoulded

Maximum Dry Density (t/m³): 1.81 Optimum Moisture Content(%): 14.8 Moulded Moisture Content (%): 14.7

Achieved Density Ratio (%): 95.5 Achieved Moisture Ratio (%): 99.0

Moisture Content (%)	Compacted Dry Density t/m ³	Thermal Conductivity (W / m K)	Thermal Resistivity (m K / W)
0.0		0.32	3.13
4.6		0.58	1.72
9.0		1.05	0.95
14.7	1.72	1.74	0.57

Thermal Resistivity Dry Out Curve

Resistivity Meter: TC1396 Needle ID.: 0239 Needle Resistance: 82.93 Ohm/m

Remarks:

Accredited for compliance with ISO/IEC 17025-Testing. The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

J Lamont

Form No.: CG 351.005 Issue Date: 04/06/2018 **Head Office:**

25 Metcalf Street Dandenong South VIC 3175

Ph: +61 8796 7900

Thermal Resistivity Dryout Curve Report

Customer: SMEC Report No: W18DS02259

Customer Address: Level 10, 71 Queens Rd Melbourne VIC 3004 CG Project No: 1007949

Project: Wyalong Solar Farm **Report Date: 21/08/18**

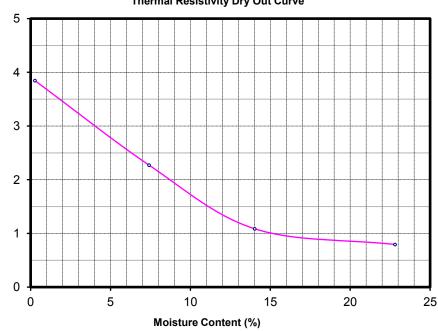
Project Location: Wyalong Test Method: TR LAB.2013 (In-House)

Customer Request No.: 30041768 **Page:** 2 of 3

Testing performed and reported at our Dandenong South Laboratory

Date Moulded: 14/08/2018 Sample No: S18DS-08706

Client Sample ID: 5 Sampling Procedure: As Received


Sample Location: BH05 @ 1.0-1.5m Sample Description: CLAY **Date Sampled: 25/07/2018** Sample History: Remoulded

Maximum Dry Density (t/m³): 1.58 Optimum Moisture Content(%): 23.1 Moulded Moisture Content (%): 22.8

Achieved Density Ratio (%): 95.5 Achieved Moisture Ratio (%): 98.5

Moisture Content (%)	Compacted Dry Density t/m ³	Thermal Conductivity (W / m K)	Thermal Resistivity (m K / W)
0.3		0.26	3.85
7.4		0.44	2.27
14.0		0.92	1.09
22.8	1.51	1.26	0.79

Thermal Resistivity Dry Out Curve

Resistivity Meter: TC1396 Needle ID.: 0239 Needle Resistance: 82.93 Ohm/m

Remarks:

Thermal Resistivity (m K/W)

Accredited for compliance with ISO/IEC 17025-Testing. The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

J Lamont

Form No.: CG 351.005 Issue Date: 04/06/2018

Head Office:

25 Metcalf Street Dandenong South VIC 3175

Ph: +61 8796 7900

Thermal Resistivity Dryout Curve Report

Customer: SMEC Report No: W18DS02259

Customer Address: Level 10, 71 Queens Rd Melbourne VIC 3004 CG Project No: 1007949

Project: Wyalong Solar Farm **Report Date: 21/08/18**

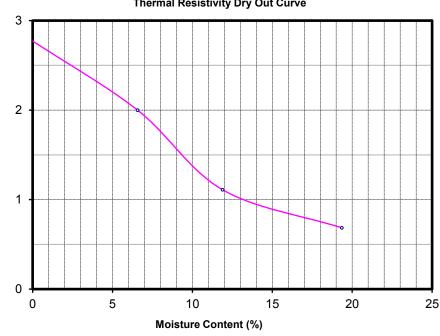
Test Method: TR LAB.2013 (In-House) Project Location: Wyalong

Customer Request No.: 30041768 **Page:** 3 of 3

Testing performed and reported at our Dandenong South Laboratory

Sample No: S18DS-08711 **Date Moulded: 8/08/2018**

Client Sample ID: 10 Sampling Procedure: As Received


Sample Location: BH16 @ 1.0-1.5m Sample Description: CLAY **Date Sampled: 26/07/2018** Sample History: Remoulded

Maximum Dry Density (t/m³): 1.70 Optimum Moisture Content(%): 19.7 Moulded Moisture Content (%): 19.3

Achieved Density Ratio (%): 95.5 Achieved Moisture Ratio (%): 98.0

Moisture Content (%)	Compacted Dry Density t/m ³	Thermal Conductivity (W / m K)	Thermal Resistivity (m K / W)
0.0		0.36	2.78
6.6		0.50	2.00
11.9		0.90	1.11
19.3	1.63	1.46	0.68

Thermal Resistivity Dry Out Curve

Resistivity Meter: TC1396 Needle ID.: 0239 Needle Resistance: 82.93 Ohm/m

Remarks:

Thermal Resistivity (m K/W)

Accredited for compliance with ISO/IEC 17025-Testing. The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

J Lamont

Form No : CG 351 005 Issue Date: 04/06/2018

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

SMEC Australia Pty Ltd Level 10, 71 Queens Road Melbourne VIC 3004

Attention: Nihad Rajabdeen

Report 610075-S

Project name WYALONG WEST SOLAR FARM

Project ID 30041768
Received Date Jul 31, 2018

Client Sample ID			BH04	вно6	BH07	BH16
Sample Matrix			Soil	Soil M18-JI35696	Soil M18-JI35697	Soil
Eurofins I mgt Sample No.			M18-JI35695			M18-JI35698
Date Sampled			Jul 24, 2018	Jul 25, 2018	Jul 25, 2018	Jul 26, 2018
Test/Reference	LOR	Unit				
Chloride	5	mg/kg	700	380	6.9	590
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	380	380	48	370
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.0	7.9	7.4	7.4
Sulphate (as SO4)	30	mg/kg	210	120	< 30	180
% Moisture	1	%	21	12	3.5	17

Client Sample ID Sample Matrix Eurofins I mgt Sample No. Date Sampled Test/Reference	LOR	Unit	BH17 Soil M18-JI35699 Jul 27, 2018	BH23 Soil M18-JI35700 Jul 25, 2018	BH27 Soil M18-JI35701 Jul 24, 2018	BH28 Soil M18-JI35702 Jul 26, 2018
Chloride	5	mg/kg	42	630	38	330
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	190	430	110	290
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.4	4.8	6.3	8.4
Sulphate (as SO4)	30	mg/kg	< 30	120	< 30	72
% Moisture	1	%	4.5	16	3.7	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Chloride	Testing Site Melbourne	Extracted Aug 01, 2018	Holding Time 28 Day
- Method: LTM-INO-4090 Chloride by Discrete Analyser		G ,	•
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Aug 01, 2018	7 Day
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Aug 01, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Melbourne	Aug 01, 2018	28 Day
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
% Moisture	Melbourne	Jul 31, 2018	14 Day

- Method: LTM-GEN-7080 Moisture

Report Number: 610075-S

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: SMEC Australia Pty Ltd (VIC)

Address: Level 10, 71 Queens Road

Melbourne VIC 3004

Project Name: WYALONG WEST SOLAR FARM

Project ID: 30041768

Order No.: Received: Jul 31, 2018 1:15 PM

 Report #:
 610075
 Due:
 Aug 7, 2018

 Phone:
 03 9514 1500
 Priority:
 5 Day

03 9514 1502 Contact Name: Nihad Rajabdeen

Eurofins I mgt Analytical Services Manager : Cindi Guo

Sample Detail								pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set
Melbourne Laboratory - NATA Site # 1254 & 14271						Х	Х	Х	Х	Х
Sydney Laboratory - NATA Site # 18217										
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - N	NATA Site # 237	'36							
Exte	rnal Laboratory	<u>, </u>								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH04	Jul 24, 2018		Soil	M18-Jl35695	Х	Х	Х	Х	Х
2	BH06	Jul 25, 2018		Soil	M18-Jl35696	Х	Х	Х	Х	Х
3	BH07	Jul 25, 2018		Soil	M18-Jl35697	Х	Х	Х	Х	Х
4	BH16	Jul 26, 2018		Soil	M18-Jl35698	Х	Х	Х	Х	Х
5	BH17	Jul 27, 2018		Soil	M18-Jl35699	Х	Х	Х	Х	Х
6	BH23	Jul 25, 2018		Soil	M18-Jl35700	Х	Х	Х	Х	Х
7	BH27	Jul 24, 2018		Soil	M18-Jl35701	Х	Х	Х	Х	Х
8	BH28	Jul 26, 2018		Soil	M18-Jl35702	Х	Х	Х	Х	Х
Test	Test Counts						8	8	8	8

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 610075-S

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 610075-S

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chloride			mg/kg	< 5			5	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10			10	Pass	
Sulphate (as SO4)			mg/kg	< 30			30	Pass	
LCS - % Recovery									
Chloride			%	111			70-130	Pass	
Sulphate (as SO4)			%	103			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	Spike - % Recovery								
				Result 1					
Sulphate (as SO4)	M18-Jl35646	NCP	%	93			70-130	Pass	
Spike - % Recovery									
				Result 1					
Chloride	M18-Jl35698	CP	%	80			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							_		
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as rec.)	M18-Jl35658	NCP	pH Units	5.9	6.0	pass	30%	Pass	
Sulphate (as SO4)	M18-Au00058	NCP	mg/kg	< 30	< 30	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M18-Jl35699	CP	%	4.5	4.0	12	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Cindi Guo Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Michael Brancati Senior Analyst-Inorganic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

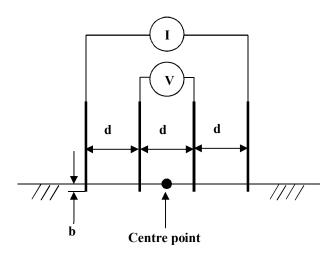
Measurement uncertainty of test data is available on request or please click here.

Eurofins I mgl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, in no case shall Eurofins I mgl be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported.

Report Number: 610075-S

Appendix E Electrical Resistivity Testing Results

Wyalong Solar Farm Soil Resistivity Report


Client	Lightsource BP
Site Location:	Wyalong Solar Farm
Document Number:	SMEC-WYG-REP-002

Test Methodology: 4 Pole Wenner Method

The Wenner Method was used to perform the soil resistivity tests, with the probe spacing and configuration indicated below:

The following steps are required for the Wenner method:

- 1. A centre point needs to be selected on the middle of the ground, which shall be marked, as this will be the reference point.
- 2. Four equally spaced earth electrodes to be inserted into the ground.
- 3. Ensure that the test electrodes are in a straight line and the inserted depth is no more than 1/20th of the electrode spacing. (b = d / 20)
- 4. Using appropriate testing equipment, current is injected into the earth via the two outer rods and the voltage between the two inner rods is measured.
- 5. The apparent soil resistivity shall be calculated. ($\rho = R_{mes} \times 2\pi \times d$) and recorded in the tables provided in section.

Soil Resistivity Test Results

Client: Lightsource BP

Location of Test:

Wyalong Solar Farm

Date of Tests:

21/08/18 & 22/08/18

Test Conditions

Weather: Cold and drizzle of rain. Constant soil moisture content at all different site locations.

All traverses completed in dry wheat fields.

Test Procedure: Four Pole Wenner Method

Equipment Used During Testing: Serial Number: Next Calibration Date:

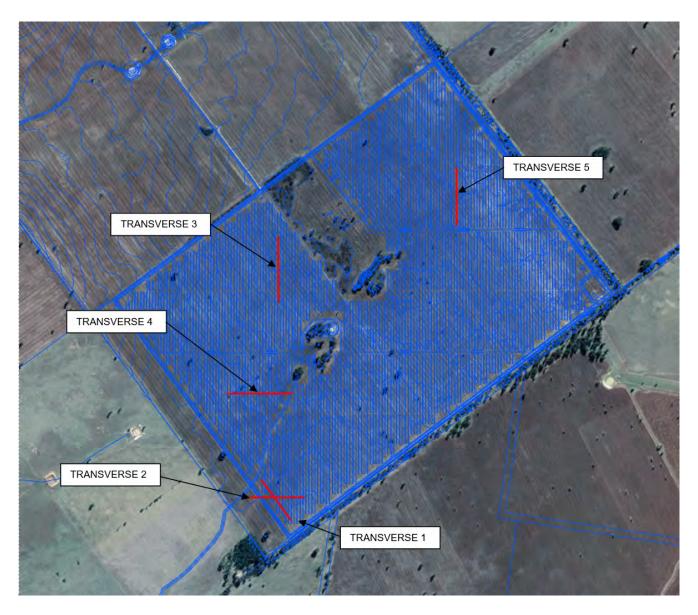
AEMC 6472 193373QKDV 30 November 2018

Summary of Results:

 Substation measurements: Traverses 1 & 2 were completed (locations indicated Page 4) and using algorithm converted into a two (2) layer soil model as below:

Layer	Depth	Resistivity
1	0 – 0.431 m	28.91
2	0.431 m to infinite	6.86

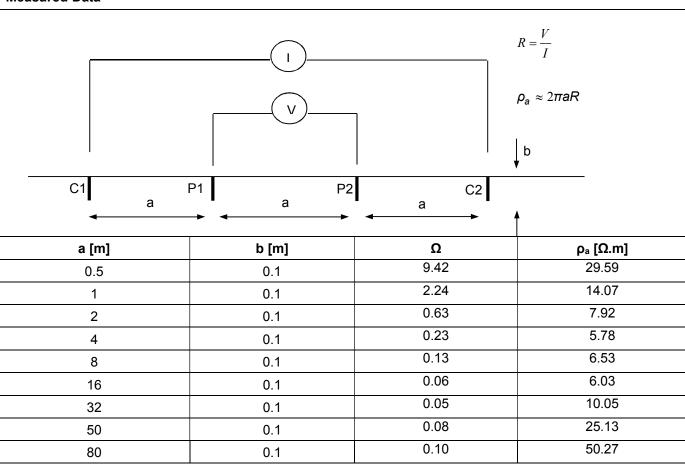
• Field measurements: Traverses 3,4 & 5 were completed (locations indicated Page 4) using algorithm converted into a two (2) layer soil model as below:


Layer	Depth	Resistivity
1	0 – 0.276 m	68.35
2	0.276 m to infinite	5.34

Test Sheet Acceptance Sign Off:

\$	SMEC Report Written by:	SMEC Report Approved by:	
Name:	Jess Ramakrishnan / David Townley	Name:	Malcolm Davies
Signature:	Rud Day	Signature:	
Date:	24/08/2018	Date:	24/08/2018

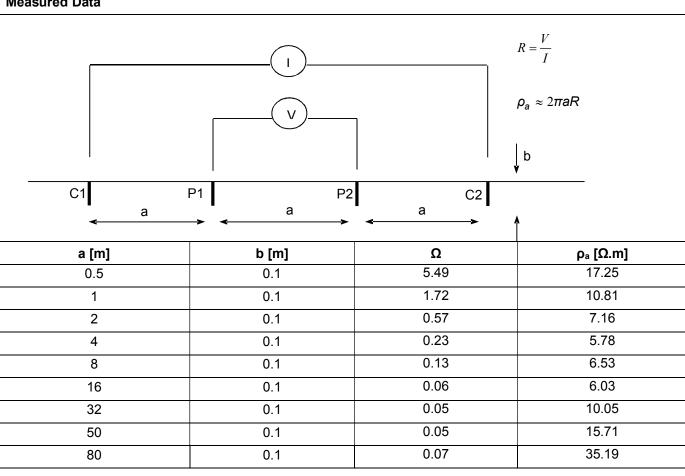
Test Location


Wyalong Solar Farm

Test Sheet (Traverse #1)

Test Details	
Location:	Substation Centrepoint: WGS 84 529681E 6257971N N/W Corner End Point 1: WGS 84 529604E 6258059N N/W Corner End Point 2: WGS 84 529749E 6257876N
Traverse / Direction No:	Traverse 1, (at substation location)
Date:	21/08/17
Time (start):	1430H
Time (finish):	1630H
Test Conditions:	Dry wheat fields
Method:	Four Pole Wenner Method
Test Setup	
Instrument:	AEMC 6472
Calibration Data (last test, next test):	New machine – next calibration due : 28 October 2018
Max. voltage:	42V Peak
Max. current:	10mA
Frequency:	128Hz square wave
Massurad Data	•

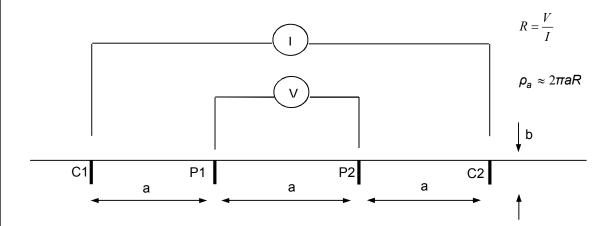
Measured Data



Test Sheet (Traverse #2)

Test Details	
Location:	Substation Centrepoint - WGS 84 529681E 6257971N N/E Corner End Point 1: WGS 84 529561E 6257968N N/E Corner End Point 2: WGS 84 529797E 6257963N
Traverse / Direction No:	Traverse 2 (at substation location)
Date:	21/08/18
Time (start):	1630H
Time (finish):	1730H
Test Conditions:	Dry wheat fields
Method:	Four Pole Wenner Method
Test Setup	
Instrument:	AEMC 6472
Calibration Data (last test, next test):	New machine – next calibration due : 28 October 2018
Max. voltage:	42V Peak
Max. current:	10mA
Frequency:	128Hz square wave

Measured Data



Test Sheet (Traverse #3)

Test Details	
Location:	Centrepoint: WGS 84 529651E 6259018N N-S Direction
Traverse / Direction No:	Traverse 3
Date:	22/08/18
Time (start):	0800H
Time (finish):	1000H
Test Conditions:	Dry wheat fields
Method:	Four Pole Wenner Method
Test Setup	
Instrument:	AEMC 6472
Calibration Data (last test, next test):	New machine – next calibration due : 28 October 2018
Max. voltage:	42V Peak
Max. current:	10mA
Frequency:	128Hz square wave

Measured Data

a [m]	b [m]	Ω	$\rho_a \left[\Omega.m\right]$
0.5	0.1	7.89	24.79
1	0.1	1.79	11.25
2	0.1	0.44	5.53
4	0.1	0.18	4.52
8	0.1	0.10	5.03
16	0.1	0.04	4.02
32	0.1	0.03	6.03
50	0.1	0.02	6.28
80	0.1	0.02	10.05

Test Sheet (Traverse #4)

Test Details					
Location:	Centrepoint: WGS E-W Direction	Centrepoint: WGS 84 529586E 6258460N E-W Direction			
Traverse / Direction No:	Traverse 4	Traverse 4			
Date:	22/08/18	22/08/18			
me (start): 1200H					
me (finish): 1330H					
Test Conditions:	Dry wheat fields	Dry wheat fields			
Method:	Four Pole Wenner	Four Pole Wenner Method			
Test Setup	<u> </u>				
Instrument: AEMC 6472					
Calibration Data (last test, next	test): New machine – ne	New machine – next calibration due : 28 October 2018			
Max. voltage:	42V Peak	 2V Peak			
Max. current:	10mA				
Frequency: 128Hz square wave					
Measured Data	· ·				
			$ ho_{a}pprox2\pi aR$ b		
C1 F	P1 F	² 2 C2	<u>'</u>		
◆	→	a	†		
a [m]	b [m]	Ω	ρ _a [Ω.m]		
	0.1	1.39	4.37		
0.5	***				
1	0.1	0.72	4.52		
		0.3	3.77		
1	0.1	0.3 0.18	3.77 4.52		
1 2	0.1 0.1	0.3 0.18 0.08	3.77 4.52 4.02		
1 2 4	0.1 0.1 0.1	0.3 0.18 0.08 0.05	3.77 4.52 4.02 5.03		
1 2 4 8	0.1 0.1 0.1 0.1	0.3 0.18 0.08 0.05 0.06	3.77 4.52 4.02 5.03 12.06		
1 2 4 8 16	0.1 0.1 0.1 0.1 0.1	0.3 0.18 0.08 0.05	3.77 4.52 4.02 5.03		

80

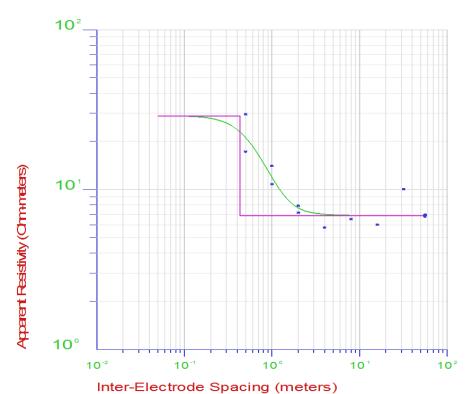
Test Sheet (Traverse #5)

Test Details					
Location:	Centrepoint: WC				
Traverse / Direction No:	Traverse 5	Traverse 5			
Date:	22/08/18	22/08/18			
Time (start):	1330H	1330H			
Time (finish):	1530H	1530H			
Test Conditions:	Dry wheat fields	Dry wheat fields			
Method:	Four Pole Wenr	Four Pole Wenner Method			
Test Setup	1				
Instrument:	AEMC 6472	AEMC 6472			
Calibration Data (last test, next	t test): New machine –	New machine – next calibration due : 28 October 2018			
Max. voltage:	42V Peak	42V Peak			
Max. current:	10mA	10mA			
Frequency: 128Hz square wave					
Measured Data	1				
	(I)		$R = \frac{V}{I}$ $ ho_a \approx 2\pi aR$		
C1	P1	P2 C2	<u> </u>		
∢ a	→ a	→ → a	†		
a [m]	b [m]	Ω	ρ _a [Ω.m]		
0.5	0.1	8.13	25.54		
1	0.1	1.60	10.05		
2	0.1	0.58	7.29		
4	0.1	0.20	5.03		
8	0.1	0.08	4.02		
16	0.1	0.05	5.03		
32	0.1	0.03	6.03		
50	0.1	0.02	6.28		

0.1

0.02

10.05



Soil Model

The following model was calculated using CDEGS software:

Figure 1:Wyalong Solar Farm - 2 Layer Soil Model for Substation Traverses

Metric/Logarithmic X and Y

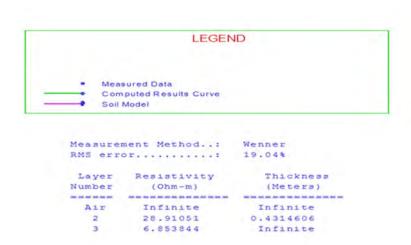
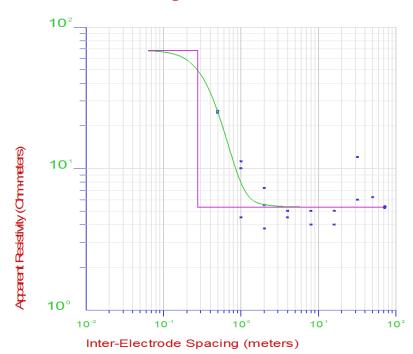



Figure 2: Wyalong Solar Farm - 2 Layer Soil Model for Field Traverses

Metric/Logarithmic X and Y

Measurement Method.: Wenner RMS error....: 27.95%

Layer Resistivity Thickness (Meters)

Air Infinite Infinite 2 68.34624 0.2756365 3 5.337744 Infinite

Appendix B: Testing Process

Figure 3: Testing process- AEMC 6472 Ground Tester

Figure 4: Testing process - indicating probe layout and using AEMC 6472 Ground Tester

local people global experience

SMEC is recognised for providing technical excellence and consultancy expertise in urban, infrastructure and management advisory. From concept to completion, our core service offering covers the life-cycle of a project and maximises value to our clients and communities. We align global expertise with local knowledge and state-of-the-art processes and systems to deliver innovative solutions to a range of industry sectors.

